期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
概率潜在语义分析的KNN文本分类算法
被引量:
3
1
作者
戚后林
顾磊
《计算机技术与发展》
2017年第7期57-61,共5页
传统的KNN文本算法在计算文本之间的相似度时,只是做简单的概念匹配,没有考虑到训练集与测试集文本中词项携带的语义信息,因此在利用KNN分类器进行文本分类过程中有可能导致语义丢失,分类结果不准确。针对这种情况,提出了一种基于概率...
传统的KNN文本算法在计算文本之间的相似度时,只是做简单的概念匹配,没有考虑到训练集与测试集文本中词项携带的语义信息,因此在利用KNN分类器进行文本分类过程中有可能导致语义丢失,分类结果不准确。针对这种情况,提出了一种基于概率潜在主题模型的KNN文本分类算法。该算法预先使用概率主题模型对训练集文本进行文本-主题、主题-词项建模,将文本携带的语义信息映射到主题上的低维空间,把文本相似度用文本-主题、主题-词项的概率分布表示,对低维文本的语义信息利用KNN算法进行文本分类。实验结果表明,在训练较大的训练数据集和待分类数据集上,所提算法能够利用KNN分类器进行文本的语义分类,且能提高KNN分类的准确率和召回率以及F1值。
展开更多
关键词
文本分类
KNN算法
文本表示模型
语义分类
概率潜在主题模型
下载PDF
职称材料
基于密度与最小距离的K-means算法初始中心方法
被引量:
2
2
作者
戚后林
顾磊
《计算机技术与发展》
2017年第9期60-63,69,共5页
为了克服在传统K-means聚类算法过程中因初始类簇中心的随机性指定所带来的聚类结果波动较大的缺陷,提出了一种基于密度与最小距离作为参数来确定初始类簇中心的算法。该算法根据一定的规则计算数据对象的密度参数,在计算完数据集中每...
为了克服在传统K-means聚类算法过程中因初始类簇中心的随机性指定所带来的聚类结果波动较大的缺陷,提出了一种基于密度与最小距离作为参数来确定初始类簇中心的算法。该算法根据一定的规则计算数据对象的密度参数,在计算完数据集中每条数据的单点密度之后,计算每个数据对象与较其密度大的其他数据对象的最小距离,以密度和最小距离作为参数,选取密度和最小距离同时较大的点作为K-means聚类过程的初始类簇中心。实验结果表明,在类簇数目确定的情况下,应用该算法确定的初始K-means类簇中心,在标准的UCI数据集上能够进行K-means聚类,且与随机选择类簇中心和其他使用密度作为参数的算法相比,基于改进后的初始中心方法的K-means聚类算法具有较高的准确率和更快的收敛速度。
展开更多
关键词
K-MEANS算法
类簇中心
密度
最小距离
迭代次数
下载PDF
职称材料
题名
概率潜在语义分析的KNN文本分类算法
被引量:
3
1
作者
戚后林
顾磊
机构
南京邮电大学计算机学院
出处
《计算机技术与发展》
2017年第7期57-61,共5页
基金
国家自然科学基金资助项目(61302157)
文摘
传统的KNN文本算法在计算文本之间的相似度时,只是做简单的概念匹配,没有考虑到训练集与测试集文本中词项携带的语义信息,因此在利用KNN分类器进行文本分类过程中有可能导致语义丢失,分类结果不准确。针对这种情况,提出了一种基于概率潜在主题模型的KNN文本分类算法。该算法预先使用概率主题模型对训练集文本进行文本-主题、主题-词项建模,将文本携带的语义信息映射到主题上的低维空间,把文本相似度用文本-主题、主题-词项的概率分布表示,对低维文本的语义信息利用KNN算法进行文本分类。实验结果表明,在训练较大的训练数据集和待分类数据集上,所提算法能够利用KNN分类器进行文本的语义分类,且能提高KNN分类的准确率和召回率以及F1值。
关键词
文本分类
KNN算法
文本表示模型
语义分类
概率潜在主题模型
Keywords
text classification
KNN
text presentation model
semantic classification
probability latent semantic analysis
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
基于密度与最小距离的K-means算法初始中心方法
被引量:
2
2
作者
戚后林
顾磊
机构
南京邮电大学计算机学院
出处
《计算机技术与发展》
2017年第9期60-63,69,共5页
基金
国家自然科学基金资助项目(61302157)
文摘
为了克服在传统K-means聚类算法过程中因初始类簇中心的随机性指定所带来的聚类结果波动较大的缺陷,提出了一种基于密度与最小距离作为参数来确定初始类簇中心的算法。该算法根据一定的规则计算数据对象的密度参数,在计算完数据集中每条数据的单点密度之后,计算每个数据对象与较其密度大的其他数据对象的最小距离,以密度和最小距离作为参数,选取密度和最小距离同时较大的点作为K-means聚类过程的初始类簇中心。实验结果表明,在类簇数目确定的情况下,应用该算法确定的初始K-means类簇中心,在标准的UCI数据集上能够进行K-means聚类,且与随机选择类簇中心和其他使用密度作为参数的算法相比,基于改进后的初始中心方法的K-means聚类算法具有较高的准确率和更快的收敛速度。
关键词
K-MEANS算法
类簇中心
密度
最小距离
迭代次数
Keywords
K -means algorithm
cluster center
density
minimum distance
iteration number
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
概率潜在语义分析的KNN文本分类算法
戚后林
顾磊
《计算机技术与发展》
2017
3
下载PDF
职称材料
2
基于密度与最小距离的K-means算法初始中心方法
戚后林
顾磊
《计算机技术与发展》
2017
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部