期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合多源数据的深度学习短时降水预测
1
作者
夏景明
戴如晨
谈玲
《计算机系统应用》
2024年第8期123-131,共9页
针对传统降水预测方法的局限性,提出了一种融合多源数据的深度学习短时降水预测模型MSF-Net.在GPM历史降水数据的基础上融合了ERA5气象数据、雷达数据和DEM数据.利用气象特征提取模块学习多源数据的气象特征,通过注意力融合预测模块进...
针对传统降水预测方法的局限性,提出了一种融合多源数据的深度学习短时降水预测模型MSF-Net.在GPM历史降水数据的基础上融合了ERA5气象数据、雷达数据和DEM数据.利用气象特征提取模块学习多源数据的气象特征,通过注意力融合预测模块进行特征融合并实现短时降水预测.将MSF-Net的降水预测结果与多种人工智能方法进行对比,实验结果表明,MSF-Net模型的风险评分TS和偏差评分Bias最优,表明其可以在6 h的预测时效内提升数据驱动降水预测的效果.
展开更多
关键词
深度学习
短时降水预测
注意力机制
数据融合
数据驱动
下载PDF
职称材料
题名
融合多源数据的深度学习短时降水预测
1
作者
夏景明
戴如晨
谈玲
机构
南京信息工程大学人工智能学院
南京信息工程大学计算机学院
出处
《计算机系统应用》
2024年第8期123-131,共9页
基金
国家重点研发计划(2021YFB2901900)
江苏省研究生科研与实践创新计划(SJCX23_0407)。
文摘
针对传统降水预测方法的局限性,提出了一种融合多源数据的深度学习短时降水预测模型MSF-Net.在GPM历史降水数据的基础上融合了ERA5气象数据、雷达数据和DEM数据.利用气象特征提取模块学习多源数据的气象特征,通过注意力融合预测模块进行特征融合并实现短时降水预测.将MSF-Net的降水预测结果与多种人工智能方法进行对比,实验结果表明,MSF-Net模型的风险评分TS和偏差评分Bias最优,表明其可以在6 h的预测时效内提升数据驱动降水预测的效果.
关键词
深度学习
短时降水预测
注意力机制
数据融合
数据驱动
Keywords
deep learning
short-term precipitation prediction
attention mechanism
data fusion
data-driven
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
P457.6 [天文地球—大气科学及气象学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合多源数据的深度学习短时降水预测
夏景明
戴如晨
谈玲
《计算机系统应用》
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部