期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于聚类的PU主动文本分类方法 被引量:24
1
作者 刘露 彭涛 +1 位作者 左万利 戴耀康 《软件学报》 EI CSCD 北大核心 2013年第11期2571-2583,共13页
文本分类是信息检索的关键问题之一.提取更多的可信反例和构造准确高效的分类器是PU(positive and unlabeled)文本分类的两个重要问题.然而,在现有的可信反例提取方法中,很多方法提取的可信反例数量较少,构建的分类器质量有待提高.分别... 文本分类是信息检索的关键问题之一.提取更多的可信反例和构造准确高效的分类器是PU(positive and unlabeled)文本分类的两个重要问题.然而,在现有的可信反例提取方法中,很多方法提取的可信反例数量较少,构建的分类器质量有待提高.分别针对这两个重要步骤提供了一种基于聚类的半监督主动分类方法.与传统的反例提取方法不同,利用聚类技术和正例文档应与反例文档共享尽可能少的特征项这一特点,从未标识数据集中尽可能多地移除正例,从而可以获得更多的可信反例.结合SVM主动学习和改进的Rocchio构建分类器,并采用改进的TFIDF(term frequency inverse document frequency)进行特征提取,可以显著提高分类的准确度.分别在3个不同的数据集中测试了分类结果(RCV1,Reuters-21578,20 Newsgoups).实验结果表明,基于聚类寻找可信反例可以在保持较低错误率的情况下获取更多的可信反例,而且主动学习方法的引入也显著提升了分类精度. 展开更多
关键词 PU(FIositive and unlabeled)文本分类 聚类 TFIPNDF(term FREQUENCY inverse positive negative document frequency) 主动学习 可信反例 改进的Rocchio
下载PDF
一种基于规则的无监督词性标注方法 被引量:5
2
作者 彭涛 戴耀康 +4 位作者 朱枫彤 张邦佐 刘露 闫昭 钱锋 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2015年第5期956-962,共7页
提出一种基于规则的无监督词性标注方法,利用200多条英语语法规则,创建26个规则函数,先将输入的待标注英语句子进行预处理后得到初始标记,再对每个单词调用规则函数,最终得到标注后的英语句子.通过对Brown语料库的实验,词性标注的正确... 提出一种基于规则的无监督词性标注方法,利用200多条英语语法规则,创建26个规则函数,先将输入的待标注英语句子进行预处理后得到初始标记,再对每个单词调用规则函数,最终得到标注后的英语句子.通过对Brown语料库的实验,词性标注的正确率达到93.95%.实验结果表明,本文方法可行、有效,能很好地提高英语词性标注的准确率. 展开更多
关键词 词性标注 基于规则 无监督学习 规则函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部