期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于IMOCS-BP神经网络的锂离子电池SOH估计
1
作者 王雪 游国栋 +1 位作者 房成信 张尚 《电源学报》 CSCD 北大核心 2024年第1期94-100,共7页
锂离子电池随着循环充放电次数的增长,其健康状态SOH(state-of-health)会随之发生一定程度的衰减。针对以上问题,设计了一种基于改进的多目标布谷鸟搜索IMOCS(improved multi-objective Cuckoo search)-BP神经网络的锂离子电池健康状态... 锂离子电池随着循环充放电次数的增长,其健康状态SOH(state-of-health)会随之发生一定程度的衰减。针对以上问题,设计了一种基于改进的多目标布谷鸟搜索IMOCS(improved multi-objective Cuckoo search)-BP神经网络的锂离子电池健康状态估计方法,在避免算法陷入局部最优的同时自适应改变布谷鸟搜索CS(Cuckoo search)算法更新概率和搜索步长,解决CS算法收敛速度慢和求解精度低的问题。以IMOCS算法和BP神经网络结合,对节点空间范围进行全局搜索,降低权值和阈值的初值对BP神经网络的影响,实现参数优化。通过Matlab仿真,验证了基于IMOCS-BP神经网络的SOH估计算法误差低、性能强,实现了锂电池SOH的精准预测。 展开更多
关键词 锂离子电池 健康状态 布谷鸟搜索算法 BP神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部