期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Attention-BLSTM的复杂产品制造质量预测方法
被引量:
1
1
作者
房鑫洋
张洁
+2 位作者
吕佑龙
左丽玲
刘骁佳
《计算机集成制造系统》
EI
CSCD
北大核心
2023年第12期3974-3984,共11页
复杂产品制造过程中工艺数据的高维特性以及工艺数据间的复杂关联特性,使得工艺数据中的深层次关键工艺特征难以挖掘,限制了产品质量的准确预测。鉴于此,提出一种基于注意力机制(Attention)与双向长短期记忆网络(BLSTM)的复杂产品质量...
复杂产品制造过程中工艺数据的高维特性以及工艺数据间的复杂关联特性,使得工艺数据中的深层次关键工艺特征难以挖掘,限制了产品质量的准确预测。鉴于此,提出一种基于注意力机制(Attention)与双向长短期记忆网络(BLSTM)的复杂产品质量预测方法。首先,设计数据预处理环节进行工艺数据清洗以及互信息特征筛选。然后,运用BLSTM网络模拟产品制造过程误差的复杂传递特性,挖掘上下游工艺参数的关联关系,输出BLSTM所有时刻提取的关联化工艺特征;同时,设计了Self-Attention网络,自学习各时刻关联化工艺特征对最终产品质量贡献的差异,对不同时刻工艺特征分配不同注意力权值,以强化关键特征。通过以上两阶段特征处理方式,实现深层次关键工艺特征的挖掘。最后,以关键特征作为输入层,通过反向传播神经网络(BPNN)实现复杂产品质量的准确预测。实验表明,相较于BPNN、长短期记忆神经网络(LSTM)、BLSTM以及XGBoost、基于粒子群优化的支持向量(PSO-SVR)、随机森林-贝叶期优化(BO-RF)等主流质量预测方法,所提方法有效提高了预测精度。
展开更多
关键词
复杂产品
质量预测
双向长短期记忆网络
注意力机制
下载PDF
职称材料
题名
基于Attention-BLSTM的复杂产品制造质量预测方法
被引量:
1
1
作者
房鑫洋
张洁
吕佑龙
左丽玲
刘骁佳
机构
东华大学机械工程学院
东华大学人工智能研究院
上海工业大数据与智能系统工程技术研究中心
上海航天精密机械研究所
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2023年第12期3974-3984,共11页
基金
国防基础科研资助项目(JCKY2019203C017)
国家自然科学基金资助项目(No.51905092)
+1 种基金
国家重点研发计划资助项目(2018YFB1703200)
上海市科技计划资助项目(20DZ2251400)。
文摘
复杂产品制造过程中工艺数据的高维特性以及工艺数据间的复杂关联特性,使得工艺数据中的深层次关键工艺特征难以挖掘,限制了产品质量的准确预测。鉴于此,提出一种基于注意力机制(Attention)与双向长短期记忆网络(BLSTM)的复杂产品质量预测方法。首先,设计数据预处理环节进行工艺数据清洗以及互信息特征筛选。然后,运用BLSTM网络模拟产品制造过程误差的复杂传递特性,挖掘上下游工艺参数的关联关系,输出BLSTM所有时刻提取的关联化工艺特征;同时,设计了Self-Attention网络,自学习各时刻关联化工艺特征对最终产品质量贡献的差异,对不同时刻工艺特征分配不同注意力权值,以强化关键特征。通过以上两阶段特征处理方式,实现深层次关键工艺特征的挖掘。最后,以关键特征作为输入层,通过反向传播神经网络(BPNN)实现复杂产品质量的准确预测。实验表明,相较于BPNN、长短期记忆神经网络(LSTM)、BLSTM以及XGBoost、基于粒子群优化的支持向量(PSO-SVR)、随机森林-贝叶期优化(BO-RF)等主流质量预测方法,所提方法有效提高了预测精度。
关键词
复杂产品
质量预测
双向长短期记忆网络
注意力机制
Keywords
complex product
quality prediction
bidirectional long short-term memory
attention mechanism
分类号
TH166 [机械工程—机械制造及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Attention-BLSTM的复杂产品制造质量预测方法
房鑫洋
张洁
吕佑龙
左丽玲
刘骁佳
《计算机集成制造系统》
EI
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部