期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于行列式点过程的变分拉普拉斯自编码器
被引量:
1
1
作者
敦瑞静
鲁淑霞
+1 位作者
张琦
翟俊海
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第4期629-639,共11页
变分自编码器(Variational Autoencoders,VAE)是一类重要的学习概率潜在变量的生成模型,然而VAE对复杂模型的表现力较差,生成的图像往往比较模糊.为了解决VAE生成图像模糊的问题,提出一种基于行列式点过程的变分拉普拉斯自编码器(Variat...
变分自编码器(Variational Autoencoders,VAE)是一类重要的学习概率潜在变量的生成模型,然而VAE对复杂模型的表现力较差,生成的图像往往比较模糊.为了解决VAE生成图像模糊的问题,提出一种基于行列式点过程的变分拉普拉斯自编码器(Variational Laplace Autoencoders-Determinantal Point Process,VLAE-DPP)模型,将行列式点过程方法引入变分拉普拉斯自编码器模型,在原始目标函数的基础上添加一项无监督惩罚损失,以此来提高生成图像的质量.VLAE-DPP模型利用行列式点过程来捕获一个与真实数据类似的多样性,然后通过从编码器中提取特征来学习核.最后,训练解码器优化核的伪、实、特征值和特征向量之间的损失,以鼓励解码器模拟真实数据的多样性,从而生成高质量的图像.在Fashion-MNIST,SVHN,CIFAR10数据集上的实验结果表明,VLAE-DPP模型能提高生成图像的质量.
展开更多
关键词
变分自编码器
行列式点过程
变分推断
拉普拉斯近似
生成模型
下载PDF
职称材料
题名
基于行列式点过程的变分拉普拉斯自编码器
被引量:
1
1
作者
敦瑞静
鲁淑霞
张琦
翟俊海
机构
河北省机器学习与计算智能重点实验室
河北大学数学与信息科学学院
出处
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第4期629-639,共11页
基金
河北省科技计划重点研发项目(19210310D)
河北省自然科学基金(F2021201020)。
文摘
变分自编码器(Variational Autoencoders,VAE)是一类重要的学习概率潜在变量的生成模型,然而VAE对复杂模型的表现力较差,生成的图像往往比较模糊.为了解决VAE生成图像模糊的问题,提出一种基于行列式点过程的变分拉普拉斯自编码器(Variational Laplace Autoencoders-Determinantal Point Process,VLAE-DPP)模型,将行列式点过程方法引入变分拉普拉斯自编码器模型,在原始目标函数的基础上添加一项无监督惩罚损失,以此来提高生成图像的质量.VLAE-DPP模型利用行列式点过程来捕获一个与真实数据类似的多样性,然后通过从编码器中提取特征来学习核.最后,训练解码器优化核的伪、实、特征值和特征向量之间的损失,以鼓励解码器模拟真实数据的多样性,从而生成高质量的图像.在Fashion-MNIST,SVHN,CIFAR10数据集上的实验结果表明,VLAE-DPP模型能提高生成图像的质量.
关键词
变分自编码器
行列式点过程
变分推断
拉普拉斯近似
生成模型
Keywords
variational autoencoders
determinant point process
variational inference
Laplace approximation
generative models
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于行列式点过程的变分拉普拉斯自编码器
敦瑞静
鲁淑霞
张琦
翟俊海
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2022
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部