期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于机器学习的MOFs材料研究进展:能源气体吸附分离
1
作者
文一如
付佳
刘大欢
《化工学报》
EI
CSCD
北大核心
2024年第4期1370-1381,共12页
金属有机框架(MOFs)由于其高孔隙率和超高的比表面积在气体吸附和分离领域受到广泛关注,金属有机框架数据库也因此丰富。使用高通量计算筛选方法可以提供丰富的结构性质和性能数据,有利于从大量的金属有机框架材料中筛选具有高性能的材...
金属有机框架(MOFs)由于其高孔隙率和超高的比表面积在气体吸附和分离领域受到广泛关注,金属有机框架数据库也因此丰富。使用高通量计算筛选方法可以提供丰富的结构性质和性能数据,有利于从大量的金属有机框架材料中筛选具有高性能的材料。为了充分挖掘数据内的信息,将机器学习用作辅助工具,可以揭示隐含的金属有机框架结构和性能关系;能够对金属有机框架材料在不同应用中的性能趋势有更多的理解。特别是在气体储存和分离方面,机器学习方法也被广泛应用。从适用于机器学习工作的金属有机框架的描述符,利用机器学习方法筛选及预测材料性质等方面综述了机器学习预测和设计应用于可燃气体吸附分离的金属有机框架材料的最新研究进展,加快金属有机框架的设计和开发步伐,指引材料的合成方向和规律,降低了人力物力成本。
展开更多
关键词
MOFS
吸附
分离
计算机模拟
机器学习
下载PDF
职称材料
题名
基于机器学习的MOFs材料研究进展:能源气体吸附分离
1
作者
文一如
付佳
刘大欢
机构
北京化工大学有机-无机复合材料国家重点实验室
青海大学化工学院
出处
《化工学报》
EI
CSCD
北大核心
2024年第4期1370-1381,共12页
文摘
金属有机框架(MOFs)由于其高孔隙率和超高的比表面积在气体吸附和分离领域受到广泛关注,金属有机框架数据库也因此丰富。使用高通量计算筛选方法可以提供丰富的结构性质和性能数据,有利于从大量的金属有机框架材料中筛选具有高性能的材料。为了充分挖掘数据内的信息,将机器学习用作辅助工具,可以揭示隐含的金属有机框架结构和性能关系;能够对金属有机框架材料在不同应用中的性能趋势有更多的理解。特别是在气体储存和分离方面,机器学习方法也被广泛应用。从适用于机器学习工作的金属有机框架的描述符,利用机器学习方法筛选及预测材料性质等方面综述了机器学习预测和设计应用于可燃气体吸附分离的金属有机框架材料的最新研究进展,加快金属有机框架的设计和开发步伐,指引材料的合成方向和规律,降低了人力物力成本。
关键词
MOFS
吸附
分离
计算机模拟
机器学习
Keywords
MOFs
adsorption
separation
computer simulation
machine learning
分类号
TQ028.8 [化学工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于机器学习的MOFs材料研究进展:能源气体吸附分离
文一如
付佳
刘大欢
《化工学报》
EI
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部