Ti(C,N)-TiB2 cermets were fabricated from Ti(C,N), TiB2, Co and WC powder mixtures via a vacuum hot pressing process. The influence of TiB2 content on their microstructures and mechanical properties was investigated. ...Ti(C,N)-TiB2 cermets were fabricated from Ti(C,N), TiB2, Co and WC powder mixtures via a vacuum hot pressing process. The influence of TiB2 content on their microstructures and mechanical properties was investigated. As a result of the elevated TiB2 contents, two types of corerim microstructures were present in the Ti(C,N)-TiB2 cermets, and remarkably improved mechanical properties were achieved. With the increase of TiB2 content, the flexural strength, fracture toughness and hardness of the Ti(C,N)-TiB2 cermets first increased, and then decreased, while their relative density consistently decreased. Attributed to an integration of the intergranular and intrangranular fracture behaviors, the Ti(C,N)-TiB2 cermets with 20 wt% TiB2 content exhibited the best overall properties with the relative density, hardness, fracture toughness and flexural strength at 99.3%, 1 995 HV, 7.92 MPa·m1/2 and 1 114 MPa, respectively. The underlying mechanism for their enhanced properties was studied in detail.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.21571095,51404157)the Zhejiang Provincial Natural Science Foundation of China(No.LY17E050003)+2 种基金the Taizhou Science and Technology Project(No.15gy54)the Open Research Program of Zhejiang Provincial Key Laboratory for Cutting Tools(No.ZD201501)the Open Foundation of Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology and the Public Projects of Zhejiang Province(Nos.2017C31118,2016C31049)
文摘Ti(C,N)-TiB2 cermets were fabricated from Ti(C,N), TiB2, Co and WC powder mixtures via a vacuum hot pressing process. The influence of TiB2 content on their microstructures and mechanical properties was investigated. As a result of the elevated TiB2 contents, two types of corerim microstructures were present in the Ti(C,N)-TiB2 cermets, and remarkably improved mechanical properties were achieved. With the increase of TiB2 content, the flexural strength, fracture toughness and hardness of the Ti(C,N)-TiB2 cermets first increased, and then decreased, while their relative density consistently decreased. Attributed to an integration of the intergranular and intrangranular fracture behaviors, the Ti(C,N)-TiB2 cermets with 20 wt% TiB2 content exhibited the best overall properties with the relative density, hardness, fracture toughness and flexural strength at 99.3%, 1 995 HV, 7.92 MPa·m1/2 and 1 114 MPa, respectively. The underlying mechanism for their enhanced properties was studied in detail.