期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MFDC-Net:一种融合多尺度特征和注意力机制的乳腺癌病理图像分类算法 被引量:1
1
作者 方于华 叶枫 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2023年第4期455-464,共10页
乳腺癌是全球最常见的恶性肿瘤之一,采用传统方法诊断需花费大量时间和精力,且受个人能力影响较大。用计算机辅助诊断的方法,可以提高病理图像分类的准确率和效率,从而满足临床应用的需求。为此,提出一种基于DenseNet的融合多尺度特征... 乳腺癌是全球最常见的恶性肿瘤之一,采用传统方法诊断需花费大量时间和精力,且受个人能力影响较大。用计算机辅助诊断的方法,可以提高病理图像分类的准确率和效率,从而满足临床应用的需求。为此,提出一种基于DenseNet的融合多尺度特征和注意力机制的乳腺癌病理图像分类算法(MFDC-Net)。在密集块中引入坐标注意力机制,精准定位重要特征的空间信息。采用多尺度池化过渡层,通过不同卷积核的平均池化和普通卷积,在实现降维的同时扩大感受野。采用多尺度特征增强模块,融合深层次图像特征,提高分类性能。结果显示,MFDC-Net模型的分类性能较其他经典模型更优,分类准确率达97.12%,易混淆率低至3.34%,能较好地进行乳腺癌组织病理图像分类,为诊断和治疗提供重要依据。 展开更多
关键词 乳腺癌病理图像 图像分类 注意力机制 特征融合 多尺度特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部