期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
MFDC-Net:一种融合多尺度特征和注意力机制的乳腺癌病理图像分类算法
被引量:
1
1
作者
方于华
叶枫
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2023年第4期455-464,共10页
乳腺癌是全球最常见的恶性肿瘤之一,采用传统方法诊断需花费大量时间和精力,且受个人能力影响较大。用计算机辅助诊断的方法,可以提高病理图像分类的准确率和效率,从而满足临床应用的需求。为此,提出一种基于DenseNet的融合多尺度特征...
乳腺癌是全球最常见的恶性肿瘤之一,采用传统方法诊断需花费大量时间和精力,且受个人能力影响较大。用计算机辅助诊断的方法,可以提高病理图像分类的准确率和效率,从而满足临床应用的需求。为此,提出一种基于DenseNet的融合多尺度特征和注意力机制的乳腺癌病理图像分类算法(MFDC-Net)。在密集块中引入坐标注意力机制,精准定位重要特征的空间信息。采用多尺度池化过渡层,通过不同卷积核的平均池化和普通卷积,在实现降维的同时扩大感受野。采用多尺度特征增强模块,融合深层次图像特征,提高分类性能。结果显示,MFDC-Net模型的分类性能较其他经典模型更优,分类准确率达97.12%,易混淆率低至3.34%,能较好地进行乳腺癌组织病理图像分类,为诊断和治疗提供重要依据。
展开更多
关键词
乳腺癌病理图像
图像分类
注意力机制
特征融合
多尺度特征
下载PDF
职称材料
题名
MFDC-Net:一种融合多尺度特征和注意力机制的乳腺癌病理图像分类算法
被引量:
1
1
作者
方于华
叶枫
机构
浙江工业大学管理学院
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2023年第4期455-464,共10页
基金
国家自然科学基金资助项目(72071180)。
文摘
乳腺癌是全球最常见的恶性肿瘤之一,采用传统方法诊断需花费大量时间和精力,且受个人能力影响较大。用计算机辅助诊断的方法,可以提高病理图像分类的准确率和效率,从而满足临床应用的需求。为此,提出一种基于DenseNet的融合多尺度特征和注意力机制的乳腺癌病理图像分类算法(MFDC-Net)。在密集块中引入坐标注意力机制,精准定位重要特征的空间信息。采用多尺度池化过渡层,通过不同卷积核的平均池化和普通卷积,在实现降维的同时扩大感受野。采用多尺度特征增强模块,融合深层次图像特征,提高分类性能。结果显示,MFDC-Net模型的分类性能较其他经典模型更优,分类准确率达97.12%,易混淆率低至3.34%,能较好地进行乳腺癌组织病理图像分类,为诊断和治疗提供重要依据。
关键词
乳腺癌病理图像
图像分类
注意力机制
特征融合
多尺度特征
Keywords
breast cancer pathological image
image classification
mechanism attention
feature fusion
multi-scale features
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
MFDC-Net:一种融合多尺度特征和注意力机制的乳腺癌病理图像分类算法
方于华
叶枫
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2023
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部