针对目前铝材表面缺陷检测算法在实际工程应用中检测精度低以及不够轻量化难以部署等问题,文章提出一种基于改进YOLOv5s的铝材表面缺陷检测方法。该算法以经典YOLOv5s模型为基础,将ShufflenNetV2-Block算法融合到主干网络backbone中,降...针对目前铝材表面缺陷检测算法在实际工程应用中检测精度低以及不够轻量化难以部署等问题,文章提出一种基于改进YOLOv5s的铝材表面缺陷检测方法。该算法以经典YOLOv5s模型为基础,将ShufflenNetV2-Block算法融合到主干网络backbone中,降低模型的计算复杂性;然后添加SE注意力机制,使注意力集中于缺陷相关区域,更好地区分类别之间的差异,提高分类性能和检测效率;最后优化损失函数,采用SIoU(S-intersection over union)替代CIoU,提升网络定位精度。结果表明:针孔类和斑点类缺陷检测精度比原版YOLOv5分别提升了8.3%和8.4%,mAP值提高了6.4%,提高了缺陷检测精度且降低了模型的大小和所占内存,更加便于移动端部署,有效改善了制造过程中漏检问题。展开更多
文摘针对目前铝材表面缺陷检测算法在实际工程应用中检测精度低以及不够轻量化难以部署等问题,文章提出一种基于改进YOLOv5s的铝材表面缺陷检测方法。该算法以经典YOLOv5s模型为基础,将ShufflenNetV2-Block算法融合到主干网络backbone中,降低模型的计算复杂性;然后添加SE注意力机制,使注意力集中于缺陷相关区域,更好地区分类别之间的差异,提高分类性能和检测效率;最后优化损失函数,采用SIoU(S-intersection over union)替代CIoU,提升网络定位精度。结果表明:针孔类和斑点类缺陷检测精度比原版YOLOv5分别提升了8.3%和8.4%,mAP值提高了6.4%,提高了缺陷检测精度且降低了模型的大小和所占内存,更加便于移动端部署,有效改善了制造过程中漏检问题。