期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于深度度量学习的卫星云图检索 被引量:2
1
作者 金柱璋 方旭源 +2 位作者 黄彦慧 尹曹谦 金炜 《光电工程》 CAS CSCD 北大核心 2022年第4期15-25,共11页
针对传统云图检索方法难于获得理想的检索精度且检索效率低的问题,提出了一种基于深度度量学习的云图检索方法。首先设计了残差3D-2D卷积神经网络,以提取云图的空间及光谱特征。鉴于传统基于分类的深度网络所提取的特征可能存在类内差... 针对传统云图检索方法难于获得理想的检索精度且检索效率低的问题,提出了一种基于深度度量学习的云图检索方法。首先设计了残差3D-2D卷积神经网络,以提取云图的空间及光谱特征。鉴于传统基于分类的深度网络所提取的特征可能存在类内差异大、类间差异小的问题,采用三元组训练网络,依据云图之间的相似性将云图映射到度量空间中,以使同类云图在嵌入空间中的距离小于非同类云图。在模型训练时,通过对无损三元组损失函数增加正样本对间距离的约束,改善了传统三元组损失的收敛性能,提高了云图检索的精度。在此基础上,通过哈希学习,将度量空间中的云图特征变换成哈希码,在保证检索精度的条件下提高了检索效率。实验结果表明,在东南沿海云图数据集和北半球区域云图数据集上,本文算法的平均精度均值(mean average precision,mAP)分别达到75.14%和80.14%,优于其他对比方法。 展开更多
关键词 深度学习 度量学习 三元组损失 卫星云图检索
下载PDF
注意力机制下多尺度特征融合生成对抗网络的白天海雾监测
2
作者 方旭源 金炜 +3 位作者 符冉迪 李纲 何彩芬 尹曹谦 《遥感学报》 EI CSCD 北大核心 2023年第12期2736-2747,共12页
海雾是海上一种常见的天气现象,它使能见度降低,给海上交通和作业带来极大威胁。传统的卫星遥感海雾监测算法在准确率、可移植性及自动化程度等方面都有待改善。本文在注意力机制下,利用卫星遥感云图,提出一种多尺度特征融合生成对抗网... 海雾是海上一种常见的天气现象,它使能见度降低,给海上交通和作业带来极大威胁。传统的卫星遥感海雾监测算法在准确率、可移植性及自动化程度等方面都有待改善。本文在注意力机制下,利用卫星遥感云图,提出一种多尺度特征融合生成对抗网络的白天海雾监测方法。该方法引入通道注意力机制,通过学习不同输入通道的权重,提升了网络对于重要通道云图的关注度;在此基础上,采用多尺度特征融合以获取海雾的多尺度信息,使提取的特征能兼顾海雾的整体及细节特性;为了进一步提高算法对于对海雾边缘的界定能力,本文引入对抗网络对海雾监测的生成网络进行监督,从而得到更精细的海雾区域。在测试云图的海雾监测实验中,命中率(POD)、临界成功指数(CSI)及误报率(FAR)分别为90.5%、81.28%和10.86%,均优于传统海雾监测方法以及其他基于深度学习的方法,这表明本文方法可以有效提升海雾监测的精度,研究成果对于海上船只航行、渔业生产、国防军事等具有重要意义。 展开更多
关键词 海雾监测 卫星遥感 注意力机制 生成对抗网络 多尺度特征融合
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部