[目的/意义]猕猴桃果树生长重叠明显,树冠结构复杂,利用传统方式无法实现果树单木骨架提取与冠层预测,为对密集栽培的猕猴桃果园进行高效无损监测并获取果树生长参数,本研究利用冬季简单树形进行骨架提取,并集成深度学习与数学形态学方...[目的/意义]猕猴桃果树生长重叠明显,树冠结构复杂,利用传统方式无法实现果树单木骨架提取与冠层预测,为对密集栽培的猕猴桃果园进行高效无损监测并获取果树生长参数,本研究利用冬季简单树形进行骨架提取,并集成深度学习与数学形态学方法,提高单木骨架预测精度,提出了一种融合骨架信息的冠层分割方案。[方法方法]采用低成本无人机图像获取高分辨率数据支持,改进PSP-Net语义分割模型,引入数学形态学处理提取单木骨架并优化骨架连续性,以优化单木骨架为先验实现冠层分割。[结果与讨论]优化骨架提取精度可达95%以上,相较于传统方式精度提高约15.71%,像素准确率(Pixel Accuracy,PA)值达95.84%,平均交并比(Mean In-tersection over Union,MIo U)值达95.76%,冠层分割加权得分(Weighted F1 Score,WF1)达94.07%左右;而冠层预测像素准确率PA可达95%以上,冠层分割WF1达95.76%左右,与直接利用原始骨架相比,优化骨架提高了冠层分割的PA为13.2%,MIo U为10.9%,WF1为18.4%,显著改善了分割指标。[结论]该研究为高效监测猕猴桃园以获取果树数据提供了可靠技术支撑,并为高效、低成本的果园精细化管理提供了全新的技术方案,具有重要的应用前景。展开更多
文摘[目的/意义]猕猴桃果树生长重叠明显,树冠结构复杂,利用传统方式无法实现果树单木骨架提取与冠层预测,为对密集栽培的猕猴桃果园进行高效无损监测并获取果树生长参数,本研究利用冬季简单树形进行骨架提取,并集成深度学习与数学形态学方法,提高单木骨架预测精度,提出了一种融合骨架信息的冠层分割方案。[方法方法]采用低成本无人机图像获取高分辨率数据支持,改进PSP-Net语义分割模型,引入数学形态学处理提取单木骨架并优化骨架连续性,以优化单木骨架为先验实现冠层分割。[结果与讨论]优化骨架提取精度可达95%以上,相较于传统方式精度提高约15.71%,像素准确率(Pixel Accuracy,PA)值达95.84%,平均交并比(Mean In-tersection over Union,MIo U)值达95.76%,冠层分割加权得分(Weighted F1 Score,WF1)达94.07%左右;而冠层预测像素准确率PA可达95%以上,冠层分割WF1达95.76%左右,与直接利用原始骨架相比,优化骨架提高了冠层分割的PA为13.2%,MIo U为10.9%,WF1为18.4%,显著改善了分割指标。[结论]该研究为高效监测猕猴桃园以获取果树数据提供了可靠技术支撑,并为高效、低成本的果园精细化管理提供了全新的技术方案,具有重要的应用前景。