The aim of this study is to prepare poly-L-lactide(PLLA)electrospun nanofibrous scaffolds coated with hippocampal neuron-derived extracellular matrix(N-ECM)and construct a novel neural tissue engineering scaffold.Neon...The aim of this study is to prepare poly-L-lactide(PLLA)electrospun nanofibrous scaffolds coated with hippocampal neuron-derived extracellular matrix(N-ECM)and construct a novel neural tissue engineering scaffold.Neonatal rat hippocampal neurons were seeded on PLLA nanofibers,and then decellularized to derive a cell-free extracellular matrix loaded N-ECM/PLLA modified scaffolds.The morphology and ingredients of N-ECM/PLLA were observed by scanning electron microscopy(SEM)and immunofluorescence staining respectively,and the cytocompatibility of the composite scaffolds was characterized by cell count kit-8(CCK-8)assay.The N-ECM was clearly identified loading on scaffolds when being imaged via SEM and immunofluorescence staining results showed that the N-ECM was made up of fibronectin and laminin.Most importantly,compared with tissue culture polystyrene and pure scaffolds,N-ECM/PLLA scaffolds could effectively facilitate the proliferation of rat adrenal neuroma cells(PC12 cells),indicating their better cell compatibilities.Based on the combination of N-ECM and PLLA biomaterials,the present study has fabricated a unique and versatile neural tissue engineering scaffold,offering a new thought for future neural tissue engineering.展开更多
基金Fundamental Research Funds for the Central Universities,China(No.16D110520)
文摘The aim of this study is to prepare poly-L-lactide(PLLA)electrospun nanofibrous scaffolds coated with hippocampal neuron-derived extracellular matrix(N-ECM)and construct a novel neural tissue engineering scaffold.Neonatal rat hippocampal neurons were seeded on PLLA nanofibers,and then decellularized to derive a cell-free extracellular matrix loaded N-ECM/PLLA modified scaffolds.The morphology and ingredients of N-ECM/PLLA were observed by scanning electron microscopy(SEM)and immunofluorescence staining respectively,and the cytocompatibility of the composite scaffolds was characterized by cell count kit-8(CCK-8)assay.The N-ECM was clearly identified loading on scaffolds when being imaged via SEM and immunofluorescence staining results showed that the N-ECM was made up of fibronectin and laminin.Most importantly,compared with tissue culture polystyrene and pure scaffolds,N-ECM/PLLA scaffolds could effectively facilitate the proliferation of rat adrenal neuroma cells(PC12 cells),indicating their better cell compatibilities.Based on the combination of N-ECM and PLLA biomaterials,the present study has fabricated a unique and versatile neural tissue engineering scaffold,offering a new thought for future neural tissue engineering.