We apply the Heyd-Scuseria-Ernzerhof hybrid functional calculation to study the(2, 3) nanotube codoped with various compositions of nitrogen and boron atoms. We find that the bandgaps and other properties of doped n...We apply the Heyd-Scuseria-Ernzerhof hybrid functional calculation to study the(2, 3) nanotube codoped with various compositions of nitrogen and boron atoms. We find that the bandgaps and other properties of doped nanotubes oscillate with the doped compositions. Our study should shed light on the understanding of the properties of doped small nanotubes. This might have potential in designing new nano electronic-devices.展开更多
Traditionally, we use a slab to mimic a surface and we constrain the slab to have the bulk-terminated 2D lattice constants. Here we propose a different model in which we impose no constraints, allowing all coordinates...Traditionally, we use a slab to mimic a surface and we constrain the slab to have the bulk-terminated 2D lattice constants. Here we propose a different model in which we impose no constraints, allowing all coordinates including the 2D slab itself to relax. We perform DFT calculations on both models. We find that the unconstrained slabs yield better agreement with experimental results and they have lower total energies. The optimized 2D lattice constants of the unconstrained slabs eventually converge to the attached bulk value. The total energy difference reveals that, with odd number trilayers, the unconstrained slab is much closer to the corresponding constrained slab. The surface energies both converge to the individual values with the number of atomic layers.展开更多
文摘We apply the Heyd-Scuseria-Ernzerhof hybrid functional calculation to study the(2, 3) nanotube codoped with various compositions of nitrogen and boron atoms. We find that the bandgaps and other properties of doped nanotubes oscillate with the doped compositions. Our study should shed light on the understanding of the properties of doped small nanotubes. This might have potential in designing new nano electronic-devices.
基金Project supported in part by the Major Program of National Science Foundation of China(No.51090385)the National Natural Science Foundation of China(No.50974067)
文摘Traditionally, we use a slab to mimic a surface and we constrain the slab to have the bulk-terminated 2D lattice constants. Here we propose a different model in which we impose no constraints, allowing all coordinates including the 2D slab itself to relax. We perform DFT calculations on both models. We find that the unconstrained slabs yield better agreement with experimental results and they have lower total energies. The optimized 2D lattice constants of the unconstrained slabs eventually converge to the attached bulk value. The total energy difference reveals that, with odd number trilayers, the unconstrained slab is much closer to the corresponding constrained slab. The surface energies both converge to the individual values with the number of atomic layers.