期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于CNN-Attention-LSTM的大坝变形预测模型
1
作者
施彦彤
郑东健
+1 位作者
赵汉
周新新
《水利水电技术(中英文)》
北大核心
2024年第9期121-132,共12页
【目的】预测大坝变形以规避风险是大坝变形监测的重点,一个可靠的预测模型可以洞察大坝未来变形趋势。为了更好地预测大坝的变形,提高预测精度和计算效率,【方法】提出了一种基于卷积神经网络(CNN)、注意力机制(Attention)和长短时记...
【目的】预测大坝变形以规避风险是大坝变形监测的重点,一个可靠的预测模型可以洞察大坝未来变形趋势。为了更好地预测大坝的变形,提高预测精度和计算效率,【方法】提出了一种基于卷积神经网络(CNN)、注意力机制(Attention)和长短时记忆网络(LSTM)的大坝监测模型。CNN从监测数据中提取特征,LSTM更好地从时间序列数据中学习,并在此CNN-LSTM模型的基础上,耦合深度学习算法Attention机制,突出特征对输入效果的影响,在不影响模型精度的前提下提高计算速度,进一步提高模型预测精度与稳定性。同时,结合工程实例进行了应用分析。【结果】结果显示,所建模型能够精确预测大坝变形,在各点位测试集上平均R2、MAE、RMSE、MSE和MAPE分别为0.989 mm、0.337 mm、0.469 mm、0.252 mm和13.918%。【结论】结果表明:所建模型具有较好的变形预测能力和适用性,相较于CNN、LSTM、CNN-LSTM、Attention-LSTM模型,该模型具有较好的MAE、RMSE、MSE、MAPE和R2等指标,并提高了计算效率,更适合大坝变形的预测。
展开更多
关键词
变形预测
卷积神经网络
长短时记忆网络
注意力机制
影响因素
下载PDF
职称材料
题名
基于CNN-Attention-LSTM的大坝变形预测模型
1
作者
施彦彤
郑东健
赵汉
周新新
机构
河海大学水利水电学院
河海大学水文水资源与水利工程科学国家重点实验室
出处
《水利水电技术(中英文)》
北大核心
2024年第9期121-132,共12页
基金
国家自然科学基金项目(52179128)。
文摘
【目的】预测大坝变形以规避风险是大坝变形监测的重点,一个可靠的预测模型可以洞察大坝未来变形趋势。为了更好地预测大坝的变形,提高预测精度和计算效率,【方法】提出了一种基于卷积神经网络(CNN)、注意力机制(Attention)和长短时记忆网络(LSTM)的大坝监测模型。CNN从监测数据中提取特征,LSTM更好地从时间序列数据中学习,并在此CNN-LSTM模型的基础上,耦合深度学习算法Attention机制,突出特征对输入效果的影响,在不影响模型精度的前提下提高计算速度,进一步提高模型预测精度与稳定性。同时,结合工程实例进行了应用分析。【结果】结果显示,所建模型能够精确预测大坝变形,在各点位测试集上平均R2、MAE、RMSE、MSE和MAPE分别为0.989 mm、0.337 mm、0.469 mm、0.252 mm和13.918%。【结论】结果表明:所建模型具有较好的变形预测能力和适用性,相较于CNN、LSTM、CNN-LSTM、Attention-LSTM模型,该模型具有较好的MAE、RMSE、MSE、MAPE和R2等指标,并提高了计算效率,更适合大坝变形的预测。
关键词
变形预测
卷积神经网络
长短时记忆网络
注意力机制
影响因素
Keywords
deformation prediction
convolutional neural network
long short-term memory
attention mechanism
influencing factors
分类号
TV698.11 [水利工程—水利水电工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于CNN-Attention-LSTM的大坝变形预测模型
施彦彤
郑东健
赵汉
周新新
《水利水电技术(中英文)》
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部