By repeatedly pre-cleaning the sputtering chamber with Ar gas and in-situ isochronal annealing samples, NiSi films are successfully prepared on Si (100) substrates in a radio-frequency magnetron sputtering system. A...By repeatedly pre-cleaning the sputtering chamber with Ar gas and in-situ isochronal annealing samples, NiSi films are successfully prepared on Si (100) substrates in a radio-frequency magnetron sputtering system. A comparison between the obtained NiSi and excess oxygen-contaminated Ni/Si films has been performed by EDX analysis of oxygen atomic content in both the films. Focused ion beam milling technology is employed to make the cross-sections of the samples for characterizing the NiSi film thickness and NiSi/Si interface roughness. The influences of nickel film thickness on the NiSi-film morphology and on the NiSi/Si interface roughness are studied.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 50472073 and 90406024-1, and the National Center for Nanoscience and Technology of China.
文摘By repeatedly pre-cleaning the sputtering chamber with Ar gas and in-situ isochronal annealing samples, NiSi films are successfully prepared on Si (100) substrates in a radio-frequency magnetron sputtering system. A comparison between the obtained NiSi and excess oxygen-contaminated Ni/Si films has been performed by EDX analysis of oxygen atomic content in both the films. Focused ion beam milling technology is employed to make the cross-sections of the samples for characterizing the NiSi film thickness and NiSi/Si interface roughness. The influences of nickel film thickness on the NiSi-film morphology and on the NiSi/Si interface roughness are studied.