期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于相关熵和流形正则化的图像聚类
被引量:
2
1
作者
时照群
刘兆伟
刘惊雷
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第3期469-482,共14页
近年来,聚类作为机器学习、数据挖掘等领域的基本问题受到广泛的关注及研究,然而数据中普遍存在的噪声和异常值严重影响聚类结果.提出一个基于相关熵和流形正则化的聚类框架CRNMF(Correntropy and Manifold Regularization Non-Negative...
近年来,聚类作为机器学习、数据挖掘等领域的基本问题受到广泛的关注及研究,然而数据中普遍存在的噪声和异常值严重影响聚类结果.提出一个基于相关熵和流形正则化的聚类框架CRNMF(Correntropy and Manifold Regularization Non-Negative Matrix Factorization).首先,采用基于相关熵的非负矩阵分解(Non-Negative Matrix Factorization,NMF)作为损失函数来抑制非高斯噪声和异常值的影响;其次,充分考虑数据的结构信息,采用流形正则化学习数据的局部结构,并通过l2,1-范数对非负矩阵进行稀疏约束;最后,利用半二次优化技术(Half-Quadratic Optimization Technique,HQ)进行优化,并分析了收敛性和计算复杂度.在五个图像数据集上进行测试,实验结果表明,提出的框架在图像聚类任务中具有较好的有效性和鲁棒性.
展开更多
关键词
非负矩阵分解
相关熵
流形正则化
半二次优化技术
图像聚类
下载PDF
职称材料
题名
基于相关熵和流形正则化的图像聚类
被引量:
2
1
作者
时照群
刘兆伟
刘惊雷
机构
烟台大学计算机与控制工程学院
出处
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第3期469-482,共14页
基金
国家自然科学基金(62072391,62172351)
山东省自然科学基金(ZR2020MF148)。
文摘
近年来,聚类作为机器学习、数据挖掘等领域的基本问题受到广泛的关注及研究,然而数据中普遍存在的噪声和异常值严重影响聚类结果.提出一个基于相关熵和流形正则化的聚类框架CRNMF(Correntropy and Manifold Regularization Non-Negative Matrix Factorization).首先,采用基于相关熵的非负矩阵分解(Non-Negative Matrix Factorization,NMF)作为损失函数来抑制非高斯噪声和异常值的影响;其次,充分考虑数据的结构信息,采用流形正则化学习数据的局部结构,并通过l2,1-范数对非负矩阵进行稀疏约束;最后,利用半二次优化技术(Half-Quadratic Optimization Technique,HQ)进行优化,并分析了收敛性和计算复杂度.在五个图像数据集上进行测试,实验结果表明,提出的框架在图像聚类任务中具有较好的有效性和鲁棒性.
关键词
非负矩阵分解
相关熵
流形正则化
半二次优化技术
图像聚类
Keywords
Non-Negative Matrix Factorization(NMF)
correntropy
manifold regularization
Half-Quadratic Optimization Technique(HQ)
image clustering
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于相关熵和流形正则化的图像聚类
时照群
刘兆伟
刘惊雷
《南京大学学报(自然科学版)》
CAS
CSCD
北大核心
2022
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部