期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
融合卷积神经网络和Transformer的人脸欺骗检测模型
被引量:
1
1
作者
黄灵
何希平
+2 位作者
贺丹
杨楚天
旷奇弦
《信息安全研究》
CSCD
北大核心
2024年第1期25-33,共9页
在人脸反欺骗领域,大多数现有检测模型都是基于卷积神经网络(convolutional neural network,CNN),该类方法虽能以较少的参数学习人脸识别,但其感受野是局部的;而基于Transformer的方法虽然能够全局感知,但参数量和计算量极大,无法在移...
在人脸反欺骗领域,大多数现有检测模型都是基于卷积神经网络(convolutional neural network,CNN),该类方法虽能以较少的参数学习人脸识别,但其感受野是局部的;而基于Transformer的方法虽然能够全局感知,但参数量和计算量极大,无法在移动或边缘设备广泛部署.针对以上问题,提出一种融合CNN和Transformer的人脸欺骗检测模型,旨在保持人脸全局和局部特征提取能力的前提下,实现参数量和准确度的平衡.首先,裁剪选取局部人脸图像作为输入,有效避免过拟合现象;其次,设计基于坐标注意力的特征提取模块;最后,设计融合CNN和Transformer模块,通过局部全局局部的信息交换实现图像局部特征和全局特征的提取.实验结果表明,该模型在CASIA-SURF(Depth模态)数据集上获得了99.31%的准确率以及0.54%的平均错误率;甚至在CASIA-FASD和Replay-Attack这2个数据集上实现了零错误率,且模型参数量仅0.59MB,远小于Transformer系列模型.
展开更多
关键词
人脸欺骗检测
CNN
TRANSFORMER
模型融合
注意力机制
下载PDF
职称材料
题名
融合卷积神经网络和Transformer的人脸欺骗检测模型
被引量:
1
1
作者
黄灵
何希平
贺丹
杨楚天
旷奇弦
机构
重庆工商大学人工智能学院
检测控制集成系统重庆市工程实验室(重庆工商大学)
出处
《信息安全研究》
CSCD
北大核心
2024年第1期25-33,共9页
基金
重庆市教育委员会科学技术研究项目(KJZD-K20220080)
重庆工商大学研究生科研创新项目(yjscxx2022-112-180)。
文摘
在人脸反欺骗领域,大多数现有检测模型都是基于卷积神经网络(convolutional neural network,CNN),该类方法虽能以较少的参数学习人脸识别,但其感受野是局部的;而基于Transformer的方法虽然能够全局感知,但参数量和计算量极大,无法在移动或边缘设备广泛部署.针对以上问题,提出一种融合CNN和Transformer的人脸欺骗检测模型,旨在保持人脸全局和局部特征提取能力的前提下,实现参数量和准确度的平衡.首先,裁剪选取局部人脸图像作为输入,有效避免过拟合现象;其次,设计基于坐标注意力的特征提取模块;最后,设计融合CNN和Transformer模块,通过局部全局局部的信息交换实现图像局部特征和全局特征的提取.实验结果表明,该模型在CASIA-SURF(Depth模态)数据集上获得了99.31%的准确率以及0.54%的平均错误率;甚至在CASIA-FASD和Replay-Attack这2个数据集上实现了零错误率,且模型参数量仅0.59MB,远小于Transformer系列模型.
关键词
人脸欺骗检测
CNN
TRANSFORMER
模型融合
注意力机制
Keywords
face spoofing detection
CNN
Transformer
model fusion
attention mechanisy
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
融合卷积神经网络和Transformer的人脸欺骗检测模型
黄灵
何希平
贺丹
杨楚天
旷奇弦
《信息安全研究》
CSCD
北大核心
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部