期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合卷积神经网络和Transformer的人脸欺骗检测模型 被引量:1
1
作者 黄灵 何希平 +2 位作者 贺丹 杨楚天 旷奇弦 《信息安全研究》 CSCD 北大核心 2024年第1期25-33,共9页
在人脸反欺骗领域,大多数现有检测模型都是基于卷积神经网络(convolutional neural network,CNN),该类方法虽能以较少的参数学习人脸识别,但其感受野是局部的;而基于Transformer的方法虽然能够全局感知,但参数量和计算量极大,无法在移... 在人脸反欺骗领域,大多数现有检测模型都是基于卷积神经网络(convolutional neural network,CNN),该类方法虽能以较少的参数学习人脸识别,但其感受野是局部的;而基于Transformer的方法虽然能够全局感知,但参数量和计算量极大,无法在移动或边缘设备广泛部署.针对以上问题,提出一种融合CNN和Transformer的人脸欺骗检测模型,旨在保持人脸全局和局部特征提取能力的前提下,实现参数量和准确度的平衡.首先,裁剪选取局部人脸图像作为输入,有效避免过拟合现象;其次,设计基于坐标注意力的特征提取模块;最后,设计融合CNN和Transformer模块,通过局部全局局部的信息交换实现图像局部特征和全局特征的提取.实验结果表明,该模型在CASIA-SURF(Depth模态)数据集上获得了99.31%的准确率以及0.54%的平均错误率;甚至在CASIA-FASD和Replay-Attack这2个数据集上实现了零错误率,且模型参数量仅0.59MB,远小于Transformer系列模型. 展开更多
关键词 人脸欺骗检测 CNN TRANSFORMER 模型融合 注意力机制
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部