文摘为了提高软件缺陷预测的准确率,利用布谷鸟搜索(cuckoo search,CS)算法的寻优能力和人工神经网络(artificial neural network,ANN)算法的非线性计算能力,提出了基于CS-ANN的软件缺陷预测方法。此方法首先使用基于关联规则的特征选择算法降低数据的维度,去除了噪声属性;然后利用布谷鸟搜索算法寻找神经网络算法的权值,使用权值和神经网络算法构建出预测模型;最后使用此模型完成缺陷预测。使用公开的NASA数据集进行仿真实验,结果表明该模型降低了误报率,并提高了预测的准确率,综合评价指标AUC(area under the ROC curve)、F1值和G-mean都优于现有模型。