期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于RetinaNet的密集型钢筋计数改进算法
被引量:
6
1
作者
明洪宇
陈春梅
+1 位作者
刘桂华
邓豪
《传感器与微系统》
CSCD
2020年第12期115-118,共4页
提出了一种基于RetinaNet目标检测框架,结合高斯混合模型(GMM)和期望最大化(EM)算法的钢筋计数方法。通过在RetinaNet特征提取后端增加Soft-IOU层以对预测框与真实框的交并比进行评估。借助Soft-IOU评估到的质量分数,生成钢筋目标检测...
提出了一种基于RetinaNet目标检测框架,结合高斯混合模型(GMM)和期望最大化(EM)算法的钢筋计数方法。通过在RetinaNet特征提取后端增加Soft-IOU层以对预测框与真实框的交并比进行评估。借助Soft-IOU评估到的质量分数,生成钢筋目标检测的高斯混合模型。针对RetinaNet原始框架对密集目标检测效果欠理想的问题,采用了基于EM算法的高斯混合聚类方法解决歧义检测以提高计数精度。实验结果表明:改进后的方法较RetinaNet算法平均精度提高了3.3%,计数均方根误差提升了64.2,具有很强的适应性。
展开更多
关键词
RetinaNet网络
期望最大化(EM)算法
钢筋计数
高斯混合模型
下载PDF
职称材料
题名
基于RetinaNet的密集型钢筋计数改进算法
被引量:
6
1
作者
明洪宇
陈春梅
刘桂华
邓豪
机构
西南科技大学信息工程学院
特殊环境机器人技术四川省重点实验室
出处
《传感器与微系统》
CSCD
2020年第12期115-118,共4页
基金
国防科工局核能开发科研项目([2016]1295)
四川省科技厅重点研发资助项目(19ZS2117)。
文摘
提出了一种基于RetinaNet目标检测框架,结合高斯混合模型(GMM)和期望最大化(EM)算法的钢筋计数方法。通过在RetinaNet特征提取后端增加Soft-IOU层以对预测框与真实框的交并比进行评估。借助Soft-IOU评估到的质量分数,生成钢筋目标检测的高斯混合模型。针对RetinaNet原始框架对密集目标检测效果欠理想的问题,采用了基于EM算法的高斯混合聚类方法解决歧义检测以提高计数精度。实验结果表明:改进后的方法较RetinaNet算法平均精度提高了3.3%,计数均方根误差提升了64.2,具有很强的适应性。
关键词
RetinaNet网络
期望最大化(EM)算法
钢筋计数
高斯混合模型
Keywords
RetinaNet
expectation-maximization(EM)algorithm
rebars counting
Gaussian mixture model(GMM)
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于RetinaNet的密集型钢筋计数改进算法
明洪宇
陈春梅
刘桂华
邓豪
《传感器与微系统》
CSCD
2020
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部