期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
用于行为识别的通道可分离卷积神经网络
被引量:
1
1
作者
易子文
孙中华
+1 位作者
冯金超
贾克斌
《信号处理》
CSCD
北大核心
2020年第9期1497-1502,共6页
三维卷积神经网络比二维卷积神经网络具有更优越的时空特征提取能力,但运算量却显著增加。针对如何有效减少模型参数量、解决准确率随着计算复杂度降低而降低的问题,提出基于端到端的通道可分离卷积神经网络。通过分离通道交互作用和时...
三维卷积神经网络比二维卷积神经网络具有更优越的时空特征提取能力,但运算量却显著增加。针对如何有效减少模型参数量、解决准确率随着计算复杂度降低而降低的问题,提出基于端到端的通道可分离卷积神经网络。通过分离通道交互作用和时空交互作用来分解三维卷积,其中分别利用3×3×3 Depthwise卷积和1×1×1常规卷积进行分离通道交互作用和时空交互作用。与传统三维卷积神经网络相比,通道可分离卷积神经网络加入模型正则化,通过降低训练精度同时提高测试精度,降低了模型的过度拟合。在UCF-101和HMDB-51数据集上的实验分别达到92.7%和64.5%的准确率。结果表明,通道可分离卷积神经网络可以提高准确率并降低计算复杂度。
展开更多
关键词
行为识别
三维卷积神经网络
分组卷积
下载PDF
职称材料
题名
用于行为识别的通道可分离卷积神经网络
被引量:
1
1
作者
易子文
孙中华
冯金超
贾克斌
机构
北京工业大学信息学部
先进信息网络北京实验室
计算智能与智能系统北京市重点实验室
出处
《信号处理》
CSCD
北大核心
2020年第9期1497-1502,共6页
基金
国家自然科学基金面上项目(61672064)
国家重点研发计划项目(2018YFF01010100)
青海省基础研究计划(2020-ZJ-709)。
文摘
三维卷积神经网络比二维卷积神经网络具有更优越的时空特征提取能力,但运算量却显著增加。针对如何有效减少模型参数量、解决准确率随着计算复杂度降低而降低的问题,提出基于端到端的通道可分离卷积神经网络。通过分离通道交互作用和时空交互作用来分解三维卷积,其中分别利用3×3×3 Depthwise卷积和1×1×1常规卷积进行分离通道交互作用和时空交互作用。与传统三维卷积神经网络相比,通道可分离卷积神经网络加入模型正则化,通过降低训练精度同时提高测试精度,降低了模型的过度拟合。在UCF-101和HMDB-51数据集上的实验分别达到92.7%和64.5%的准确率。结果表明,通道可分离卷积神经网络可以提高准确率并降低计算复杂度。
关键词
行为识别
三维卷积神经网络
分组卷积
Keywords
action recognition
3D convolutional neural network
group convolution
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
用于行为识别的通道可分离卷积神经网络
易子文
孙中华
冯金超
贾克斌
《信号处理》
CSCD
北大核心
2020
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部