新能源接入现有电网将弱化系统的频率稳定性。充分利用调频资源对提升电网稳定性具有重要意义。火电作为当前调频主要资源有着复杂多变的特性,在不同工况下调频能力也会不同;且随着渗透率提高,传统的下垂控制调频方式逐渐不能满足控制...新能源接入现有电网将弱化系统的频率稳定性。充分利用调频资源对提升电网稳定性具有重要意义。火电作为当前调频主要资源有着复杂多变的特性,在不同工况下调频能力也会不同;且随着渗透率提高,传统的下垂控制调频方式逐渐不能满足控制要求。因此,提出一种储能–火电互补频率控制策略,设计了随频率变化自适应调节的出力比重系数,实现了储能出力的自适应调整,并将线性自抗扰控制(Linear active disturbance rejection control,LADRC)应用于火电机组的控制,通过频域法分析典型工业控制对象的LADRC参数调节规律。仿真结果表明,相较于传统下垂控制策略,所提出的储能–火电互补频率控制策略使系统的频率偏差最大值与稳态偏差值显著降低,并且有更好的储能恢复效果。展开更多
文摘新能源接入现有电网将弱化系统的频率稳定性。充分利用调频资源对提升电网稳定性具有重要意义。火电作为当前调频主要资源有着复杂多变的特性,在不同工况下调频能力也会不同;且随着渗透率提高,传统的下垂控制调频方式逐渐不能满足控制要求。因此,提出一种储能–火电互补频率控制策略,设计了随频率变化自适应调节的出力比重系数,实现了储能出力的自适应调整,并将线性自抗扰控制(Linear active disturbance rejection control,LADRC)应用于火电机组的控制,通过频域法分析典型工业控制对象的LADRC参数调节规律。仿真结果表明,相较于传统下垂控制策略,所提出的储能–火电互补频率控制策略使系统的频率偏差最大值与稳态偏差值显著降低,并且有更好的储能恢复效果。