及时、准确的进行人流监控及预警是公共安全管理的迫切需求,使用基于计算机视觉的人群计数方法是满足该需求的主要方法之一。针对现有计数模型对人员前景特征和背景特征的关联不够的问题,设计基于双分支自注意力机制的密集人群计数算法...及时、准确的进行人流监控及预警是公共安全管理的迫切需求,使用基于计算机视觉的人群计数方法是满足该需求的主要方法之一。针对现有计数模型对人员前景特征和背景特征的关联不够的问题,设计基于双分支自注意力机制的密集人群计数算法。在视觉主干网络之后使用双分支自注意力模块,以促使网络关注有效的人员区域,提升主干网络的特征精炼能力。在Shanghai Tech PART B和UCF-QNRF数据集上进行大量的实验,消融实验的结果证明所提出的模块提升了人群计数的准确性。此外,实验结果表明所提出方法获得比其他经典方法更好的实验结果。展开更多
为了得到优质的融合图像,提出了一种改进的拉普拉斯能量和(New Sum of Modified Laplacian,NSML)多聚焦图像融合算法。该算法在传统SML计算每个像素点的变步长拉普拉斯算子值仅有的水平和垂直方向的基础上,增加了斜对角线上的四个方向...为了得到优质的融合图像,提出了一种改进的拉普拉斯能量和(New Sum of Modified Laplacian,NSML)多聚焦图像融合算法。该算法在传统SML计算每个像素点的变步长拉普拉斯算子值仅有的水平和垂直方向的基础上,增加了斜对角线上的四个方向。同时通过分析NSML算法的计算过程,发现存在大量的重复计算,从而提出了基于积分图像的快速NSML图像融合方法。该方法通过简化NSML的计算过程,大大减少了图像融合处理过程消耗的时间,提高了图像融合的效率。实验结果表明,快速NSML方法在达到极佳融合图像质量的同时,提升了算法的实时性。展开更多
文摘及时、准确的进行人流监控及预警是公共安全管理的迫切需求,使用基于计算机视觉的人群计数方法是满足该需求的主要方法之一。针对现有计数模型对人员前景特征和背景特征的关联不够的问题,设计基于双分支自注意力机制的密集人群计数算法。在视觉主干网络之后使用双分支自注意力模块,以促使网络关注有效的人员区域,提升主干网络的特征精炼能力。在Shanghai Tech PART B和UCF-QNRF数据集上进行大量的实验,消融实验的结果证明所提出的模块提升了人群计数的准确性。此外,实验结果表明所提出方法获得比其他经典方法更好的实验结果。
文摘为了得到优质的融合图像,提出了一种改进的拉普拉斯能量和(New Sum of Modified Laplacian,NSML)多聚焦图像融合算法。该算法在传统SML计算每个像素点的变步长拉普拉斯算子值仅有的水平和垂直方向的基础上,增加了斜对角线上的四个方向。同时通过分析NSML算法的计算过程,发现存在大量的重复计算,从而提出了基于积分图像的快速NSML图像融合方法。该方法通过简化NSML的计算过程,大大减少了图像融合处理过程消耗的时间,提高了图像融合的效率。实验结果表明,快速NSML方法在达到极佳融合图像质量的同时,提升了算法的实时性。