目的探讨铜死亡相关的长链非编码RNA(long non-coding RNA,lncRNA)在喉癌临床预后预测和免疫治疗中的作用。方法使用癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库中的基因组和临床数据,通过LASSO分析和Cox回归分析构建预后模型...目的探讨铜死亡相关的长链非编码RNA(long non-coding RNA,lncRNA)在喉癌临床预后预测和免疫治疗中的作用。方法使用癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库中的基因组和临床数据,通过LASSO分析和Cox回归分析构建预后模型,使用主成分分析、时间依赖性受试者工作特征(receiver operating characteristic,ROC)曲线和一致性指数评估其临床效能;从肿瘤突变负荷、肿瘤免疫功能障碍和排除、肿瘤干性指数等多个维度分析风险模型的预后价值;最后通过基因集富集分析(gene set enrichment analysis,GESA)探索模型高风险组的细胞功能和通路富集。结果共得到5个与铜死亡相关的lncRNA预后模型。主成分分析、ROC曲线下面积(area under the curve,AUC)超过0.8、一致性指数表明所建立的风险模型具备出色的预测能力;在高低风险患者中,风险曲线与免疫相关功能无显著相关性,与RNA干性评分呈负相关(r=-0.21,P=0.025);富集分析表明,lncRNA的生物学功能与WNT信号通路有关。结论铜死亡相关的lncRNA可能是一种新的预测喉癌预后的生物标志物,并可能为喉癌的治疗提供新途径。展开更多
文摘目的探讨铜死亡相关的长链非编码RNA(long non-coding RNA,lncRNA)在喉癌临床预后预测和免疫治疗中的作用。方法使用癌症基因组图谱(The Cancer Genome Atlas,TCGA)数据库中的基因组和临床数据,通过LASSO分析和Cox回归分析构建预后模型,使用主成分分析、时间依赖性受试者工作特征(receiver operating characteristic,ROC)曲线和一致性指数评估其临床效能;从肿瘤突变负荷、肿瘤免疫功能障碍和排除、肿瘤干性指数等多个维度分析风险模型的预后价值;最后通过基因集富集分析(gene set enrichment analysis,GESA)探索模型高风险组的细胞功能和通路富集。结果共得到5个与铜死亡相关的lncRNA预后模型。主成分分析、ROC曲线下面积(area under the curve,AUC)超过0.8、一致性指数表明所建立的风险模型具备出色的预测能力;在高低风险患者中,风险曲线与免疫相关功能无显著相关性,与RNA干性评分呈负相关(r=-0.21,P=0.025);富集分析表明,lncRNA的生物学功能与WNT信号通路有关。结论铜死亡相关的lncRNA可能是一种新的预测喉癌预后的生物标志物,并可能为喉癌的治疗提供新途径。