循环平稳分析是滚动轴承故障特征提取的重要方法之一,但在用于滚动轴承故障特征提取时,存在因干扰成分较强而不能有效提取轴承故障特征的问题。为能在干扰环境中有效提取滚动轴承故障信息,基于循环谱分析提出一种鲁棒性滚动轴承故障特...循环平稳分析是滚动轴承故障特征提取的重要方法之一,但在用于滚动轴承故障特征提取时,存在因干扰成分较强而不能有效提取轴承故障特征的问题。为能在干扰环境中有效提取滚动轴承故障信息,基于循环谱分析提出一种鲁棒性滚动轴承故障特征提取方法。首先通过离散随机分离(discrete random separation,DRS)分析分离信号中的周期分量,提取其随机分量;随后用Teager能量算子(Teager energy operator,TEO)提取随机分量的振动能量序列;再对该序列进行快速谱相关(fast spectral correlation,Fast-SC)分析,采用基于能量熵的能量差异系数评价各循环频率(阶次)切片的能量强度;最终经熵加权降低无关干扰成分影响以有效提取故障特征。通过传统的快速谱峭度、快速谱相关和基于总变差去噪的快速谱相关分析方法与该方法对美国智能维护系统中心的滚动轴承振动数据以及实测齿轮箱复合故障试验信号进行对比分析,验证了该方法在滚动轴承故障诊断应用中的优势。展开更多
文摘循环平稳分析是滚动轴承故障特征提取的重要方法之一,但在用于滚动轴承故障特征提取时,存在因干扰成分较强而不能有效提取轴承故障特征的问题。为能在干扰环境中有效提取滚动轴承故障信息,基于循环谱分析提出一种鲁棒性滚动轴承故障特征提取方法。首先通过离散随机分离(discrete random separation,DRS)分析分离信号中的周期分量,提取其随机分量;随后用Teager能量算子(Teager energy operator,TEO)提取随机分量的振动能量序列;再对该序列进行快速谱相关(fast spectral correlation,Fast-SC)分析,采用基于能量熵的能量差异系数评价各循环频率(阶次)切片的能量强度;最终经熵加权降低无关干扰成分影响以有效提取故障特征。通过传统的快速谱峭度、快速谱相关和基于总变差去噪的快速谱相关分析方法与该方法对美国智能维护系统中心的滚动轴承振动数据以及实测齿轮箱复合故障试验信号进行对比分析,验证了该方法在滚动轴承故障诊断应用中的优势。