期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于注意力模型的混合推荐系统
被引量:
5
1
作者
谭台哲
晏家斌
《计算机工程与应用》
CSCD
北大核心
2020年第13期172-180,共9页
推荐系统作为信息爆炸时代下解决信息过载问题的重要方式受到了越来越大的关注。传统的推荐系统普遍存在精度不高、评价标准不明确等缺陷,将机器学习尤其是深度学习技术引入推荐系统将有效改善上述缺陷及瓶颈。提出了一种基于注意力模...
推荐系统作为信息爆炸时代下解决信息过载问题的重要方式受到了越来越大的关注。传统的推荐系统普遍存在精度不高、评价标准不明确等缺陷,将机器学习尤其是深度学习技术引入推荐系统将有效改善上述缺陷及瓶颈。提出了一种基于注意力模型的混合推荐系统,利用深度神经网络中的注意力模型对特定推荐商品的物品属性进行加权分配,获得预推荐商品的用户认可度评分;通过自适应增强模型替换传统的损失排序模型,使得精确度、召回率等相关评价指标获得较大提升。在现有推荐系统评价指标的基础上,首次引入了用户群体评价认可度指标,通过认可度指标可以在用户体验维度对推荐系统性能给出更精确的评价。
展开更多
关键词
注意力模型
自适应增强
协同过滤
混合推荐
下载PDF
职称材料
题名
基于注意力模型的混合推荐系统
被引量:
5
1
作者
谭台哲
晏家斌
机构
广东工业大学计算机学院
出处
《计算机工程与应用》
CSCD
北大核心
2020年第13期172-180,共9页
文摘
推荐系统作为信息爆炸时代下解决信息过载问题的重要方式受到了越来越大的关注。传统的推荐系统普遍存在精度不高、评价标准不明确等缺陷,将机器学习尤其是深度学习技术引入推荐系统将有效改善上述缺陷及瓶颈。提出了一种基于注意力模型的混合推荐系统,利用深度神经网络中的注意力模型对特定推荐商品的物品属性进行加权分配,获得预推荐商品的用户认可度评分;通过自适应增强模型替换传统的损失排序模型,使得精确度、召回率等相关评价指标获得较大提升。在现有推荐系统评价指标的基础上,首次引入了用户群体评价认可度指标,通过认可度指标可以在用户体验维度对推荐系统性能给出更精确的评价。
关键词
注意力模型
自适应增强
协同过滤
混合推荐
Keywords
self-attention model
Ada-Boosting
collaborative filtering
hybrid recommendation
分类号
TP39 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于注意力模型的混合推荐系统
谭台哲
晏家斌
《计算机工程与应用》
CSCD
北大核心
2020
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部