期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于时频特征融合和极限学习机的非侵入式负荷识别方法 被引量:1
1
作者 莫浩杰 彭勇刚 +3 位作者 蔡田田 邓清唐 韦巍 智新振 《电工电能新技术》 CSCD 北大核心 2023年第3期85-96,共12页
以往的负荷识别方法在提高识别精度和实际落地部署方面遇到了一些挑战,如传统经典方法的识别准确度相对较低,而先进深度学习方法又因其较复杂的模型而很难部署到嵌入式设备上。为解决上述问题,本文提出一种基于高频样本数据识别方法。... 以往的负荷识别方法在提高识别精度和实际落地部署方面遇到了一些挑战,如传统经典方法的识别准确度相对较低,而先进深度学习方法又因其较复杂的模型而很难部署到嵌入式设备上。为解决上述问题,本文提出一种基于高频样本数据识别方法。首先采用快速傅里叶变换(FFT)和希尔伯特变换(HT)对样本进行时域和频域特征提取。然后基于极限学习机(ELM)提出了一种多特征融合学习策略来获取特征与负荷类型之间的映射关系,设计了一种窗口调整方法,以获得最优模型和最合适的窗口长度。最后在两个高频公共数据集BLUED和PLAID上对该方法进行了实验评估。实验结果表明,所提方法具有识别性能较好、易于在嵌入式设备上落地部署的优点。 展开更多
关键词 特征融合 负荷识别 NILM 数字电网 时频特征
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部