期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于近邻样本评估的动态选择性集成预测算法 被引量:1
1
作者 曲文龙 李一漪 +1 位作者 陈笑屹 曲嘉一 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第5期802-810,共9页
针对现有的动态选择策略局限于寻找待测样本的局部相似样本,未充分考虑样本特征之间的重要性程度,从而对预测精度造成影响的问题,该文提出一种基于近邻样本评估的动态选择性集成预测算法。算法基于误差扰动度量出特征的重要性权值,并在... 针对现有的动态选择策略局限于寻找待测样本的局部相似样本,未充分考虑样本特征之间的重要性程度,从而对预测精度造成影响的问题,该文提出一种基于近邻样本评估的动态选择性集成预测算法。算法基于误差扰动度量出特征的重要性权值,并在此基础上进行样本近邻的相似性度量。根据不同的待测样本特点自动适应近邻数目,找到最佳近邻。通过最佳近邻对具有不同预测精度的学习器的性能评估,择优筛选出精度较高的学习器进行选择性集成预测。实验结果表明,相比原有集成学习算法和普通选择性集成算法,该算法预测精度得到进一步提升,表现出良好的预测效果和较强的预测性能。 展开更多
关键词 动态选择性集成 回归预测 近邻样本 相似度量
下载PDF
基于深度置信网络与梯度提升决策树的糖尿病检测方法 被引量:2
2
作者 曲文龙 宋晓明 曲嘉一 《吉林师范大学学报(自然科学版)》 2020年第3期112-120,共9页
针对糖尿病数据特征维度较高,单一分类器过度拟合导致性能受限,不能较好对糖尿病进行分类识别这一问题,提出了一种深度置信网(Deep Belief Networks,DBN)融合梯度提升决策树(Gradient Boosting Decision Tree,GBDT)的糖尿病检测算法(DBN... 针对糖尿病数据特征维度较高,单一分类器过度拟合导致性能受限,不能较好对糖尿病进行分类识别这一问题,提出了一种深度置信网(Deep Belief Networks,DBN)融合梯度提升决策树(Gradient Boosting Decision Tree,GBDT)的糖尿病检测算法(DBN-GBDT).该算法利用DBN对海量数据的特征提取和拟合复杂模型的能力,GBDT算法具有很强的泛化能力,将DBN用于特征提取和特征降维,GBDT方法用于分类.将提出的算法用于糖尿病数据分类识别,并与DBN、GBDT、SVM和随机森林四种经典方法进行对比.实验结果表明,该算法分类精度较高,稳定性更强,为糖尿病检测提供了新的方法. 展开更多
关键词 糖尿病检测 深度置信网络 梯度提升 分类识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部