The contradiction between classical and quantum physics can be identified through quantum contextuality, which does not need composite systems or spacelike separation. Contextuality is proven either by a logical contr...The contradiction between classical and quantum physics can be identified through quantum contextuality, which does not need composite systems or spacelike separation. Contextuality is proven either by a logical contradiction between the noncontextuality hidden variable predictions and those of quantum mechanics or by the violation of noncontextual inequality. We propose an experimental scheme of state-independent contextual inequality derived from the Mermin proof of the Kochen–Specker(KS) theorem in eight-dimensional Hilbert space, which could be observed either in an individual system or in a composite system. We also show how to resolve the compatibility problems. Our scheme can be implemented in optical systems with current experiment techniques.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. U1930402)support from the Project Funded by China Postdoctoral Science Foundation (Grant Nos. 2020M680006 and 2021T140045)+1 种基金support from the National Natural Science Foundation of China (Grant No. 12004184)the Natural Science Foundation of Jiangsu Province, China (Grants No. BK20190428)。
文摘The contradiction between classical and quantum physics can be identified through quantum contextuality, which does not need composite systems or spacelike separation. Contextuality is proven either by a logical contradiction between the noncontextuality hidden variable predictions and those of quantum mechanics or by the violation of noncontextual inequality. We propose an experimental scheme of state-independent contextual inequality derived from the Mermin proof of the Kochen–Specker(KS) theorem in eight-dimensional Hilbert space, which could be observed either in an individual system or in a composite system. We also show how to resolve the compatibility problems. Our scheme can be implemented in optical systems with current experiment techniques.