期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
氧调节原生负极-固态电解质界面层助力高稳定性固态钠金属电池
1
作者 曹克爽 夏宇凡 +8 位作者 李皓盛 黄慧琴 Sikandar Iqbal Muhammad Yousaf 徐斌 孙文平 严密 潘洪革 姜银珠 《Science Bulletin》 SCIE EI CAS CSCD 2024年第1期49-58,共10页
Solid-state sodium metal batteries utilizing inorganic solid electrolytes(SEs)hold immense potentials such as intrinsical safety,high energy density,and environmental sustainability.However,the interfacial inhomogenei... Solid-state sodium metal batteries utilizing inorganic solid electrolytes(SEs)hold immense potentials such as intrinsical safety,high energy density,and environmental sustainability.However,the interfacial inhomogeneity/instability at the anode-SE interface usually triggers the penetration of sodium dendrites into the electrolyte,leading to short circuit and battery failure.Herein,confronting with the original nonuniform and high-resistance solid electrolyte interphase(SEI)at the Na-Na_(3)Zr_(2)Si_(2)PO_(12)interface,an oxygen-regulated SEI innovative approach is proposed to enhance the cycling stability of anode-SEs interface,through a spontaneous reaction between the metallic sodium(containing trace amounts of oxygen)and the Na_(3)Zr_(2)Si_(2)POi_(2)SE.The oxygen-regulated spontaneous SEI is thin,uniform,and kinetically stable to facilitate homogenous interfacial Na^+transportation,Benefitting from the optimized SEI,the assembled symmetric cell exhibits an ultra-stable sodium plating/stripping cycle for over 6600 h under a practical capacity of 3 mAh cm^(-2).Qua si-sol id-state batteries with Na_(3)V_(2)(PO_(4))_(3)cathode deliver excellent cyclability over 500 cycles at a rate of 0.5 C(1 C=117 mA cm^(-2))with a high capacity retention of95.4%.This oxygen-regulated SEI strategy may offer a potential avenue for the future development of high-energy-density solid-state metal batteries. 展开更多
关键词 Na metal anode Solid-state batteries NASICON Anode interface Solid electrolyte interphase
原文传递
高稳定可逆的混合导电金属钠基负极助力高性能钠金属电池 被引量:3
2
作者 曹克爽 马千里 +3 位作者 Frank Tietz 徐斌 严密 姜银珠 《Science Bulletin》 SCIE EI CSCD 2021年第2期179-186,M0004,共9页
钠金属二次电池由于丰富的地壳钠资源储备、金属钠负极高的理论容量等优势受到广泛的关注,已成为后锂离子电池时代的重要技术之一.然而,金属钠负极在充放电循环过程中存在枝晶生长、体积变化等严重问题,严重制约了钠金属电池技术的发展... 钠金属二次电池由于丰富的地壳钠资源储备、金属钠负极高的理论容量等优势受到广泛的关注,已成为后锂离子电池时代的重要技术之一.然而,金属钠负极在充放电循环过程中存在枝晶生长、体积变化等严重问题,严重制约了钠金属电池技术的发展.基于以上问题,本文提出在金属钠负极体相内引入NaSICON型固态钠离子导体,构建具有离子/电子混合传输能力的金属钠基复合负极.一方面,通过钠离子传导相和金属电子导电相之间的紧密接触构建了快速的离子/电子通道和丰富的电化学反应界面,有利于实现稳定可逆的钠沉积/剥离;另一方面,紧密堆积的复合结构保护了金属钠免受液态有机电解质的腐蚀和副反应的发生.得益于上述独特的结构设计,复合负极表现出高度可逆和稳定的钠的沉积/剥离行为.在碳酸酯类电解液中,对称电池在1 m A cm^(-2)的电流密度、5 m Ah cm^(-2)的高充放电容量下实现了高于700 h的超长寿命,以及高达8 m A cm^(-2)电流密度的出色倍率性能.在搭配Na_(3)V_(2)(PO_(4))_(3)/C正极时,全电池展现出优异的循环稳定性(容量衰减单次平均仅0.012%)以及低的充放电极化. 展开更多
关键词 锂离子电池 电化学反应 二次电池 电子导电 理论容量 容量衰减 金属钠 有机电解质
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部