期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于杰卡德度量的智能拼图改进算法 被引量:4
1
作者 曹戴 陈丽芳 《计算机工程与应用》 CSCD 北大核心 2018年第2期188-192,197,共6页
智能拼图算法常用的方法是先求出各个碎片之间的相似度度量,再根据度量还原图像。MGC(马氏梯度相似度度量)是其中一种很有效的度量,但在实际运用过程中,如果碎片中有大量相似物体存在时,算法不能很好地还原图像,会出现类似于"乱码&... 智能拼图算法常用的方法是先求出各个碎片之间的相似度度量,再根据度量还原图像。MGC(马氏梯度相似度度量)是其中一种很有效的度量,但在实际运用过程中,如果碎片中有大量相似物体存在时,算法不能很好地还原图像,会出现类似于"乱码"的情况。提出了一种利用Jaccard(杰卡德)度量,结合MGC度量,计算图像碎片之间的相似度,再利用贪心策略还原图像。实验结果表明,对于由自选图像随机生成的碎片,算法能够更准确地还原图像,并且能减小出现"乱码"图像的概率。提出了把Jaccard度量和MGC度量相结合的方法运用在智能拼图的还原中,尤其是当拼图碎片中有很多相似物体的情况下,该方法能明显地减少"乱码"现象,同时实验仿真结果证明了提出的方法比单纯的MGC方法具有抗噪性强和拼图准确率高的特点,在考古学碎片图片和文字复原、计算机取证、图像合成和场景无缝拼接等领域有一定的实用价值。 展开更多
关键词 智能拼图 杰卡德度量 马氏梯度相似度度量(MGC) 最小生成树
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部