Porous, two-ply tubular chitosan conduits for guided tissue regeneration were fabricated by combining the textile technique (inner layer) with the thermally induced phase separation process (outer layer). A hollow...Porous, two-ply tubular chitosan conduits for guided tissue regeneration were fabricated by combining the textile technique (inner layer) with the thermally induced phase separation process (outer layer). A hollow chitosan tube was prepared using an industrial warp knitting process with chitosan yarns. Then, an appropriate diameter mandrel was inserted into the pre-fabricated tube. The tube and the mandrel were dipped into the chitosan solution together, taken out, and freeze-dried. After being neutralized in alkaline solution and dried at room temperature, the mandrel was removed to create the chitosan tubular scaffold. Scanning electron micrographs show that the resulting tubes have a biphasic wall structure, with a fibrous inner layer and a semipermeable outer layer. The swelling properties and the mechanical strength before and after in vitro degradation were investigated. The biocompatibility of the scaffolds was also investigated by co-culturing neuroblastoma cells (N2A, mouse) with the scaffolds. The results suggest that these chitosan tubular scaffolds are useful for the regeneration of tissues requiring a tubular scaffold.展开更多
Porous multi-channel chitosan conduits were fabricated using a novel phase-separation technique with an axial temperature gradient. First, porous chitosan tubes were made with a mold that was composed of two concentri...Porous multi-channel chitosan conduits were fabricated using a novel phase-separation technique with an axial temperature gradient. First, porous chitosan tubes were made with a mold that was composed of two concentric polytetrafiuoroethylene tubes. Then 1%-3% (w/v) chitosan solution was injected into the chitosan tube while the two ends of the tube were closed with steel rods. Then the outside of the tube was wrapped with a layer of thermal insulating material to reduce the heat transfer through the outside, and the tubes were placed in a freezer. The resulting phase separation then occurred in the presence of an axial temperature gradient. The porosity, microtubule diameter, and orientation were controlled by adjusting the polymer concentration and temperature gradient. After the preparation course, no poisonous substances remained on the conduits. The mechanical properties, swelling, and biodegradability of the chitosan conduits were investigated, and a scanning electron microscope was used to observe the tubular morphology and growth of neuroblastoma cells (N2A, mouse) in the conduits. The results demonstrate that the multi-channel chitosan conduits have suitable mechanical strength, swelling, degradation properties, and nerve cell affinity, so they hold promise for use as neural tissue engineering scaffolds.展开更多
基金Supported by the National Key Basic Research and Development (973) Program of China (No. G1999064702) and the Tsinghua-Yue-Yuen Medical Science Fund
文摘Porous, two-ply tubular chitosan conduits for guided tissue regeneration were fabricated by combining the textile technique (inner layer) with the thermally induced phase separation process (outer layer). A hollow chitosan tube was prepared using an industrial warp knitting process with chitosan yarns. Then, an appropriate diameter mandrel was inserted into the pre-fabricated tube. The tube and the mandrel were dipped into the chitosan solution together, taken out, and freeze-dried. After being neutralized in alkaline solution and dried at room temperature, the mandrel was removed to create the chitosan tubular scaffold. Scanning electron micrographs show that the resulting tubes have a biphasic wall structure, with a fibrous inner layer and a semipermeable outer layer. The swelling properties and the mechanical strength before and after in vitro degradation were investigated. The biocompatibility of the scaffolds was also investigated by co-culturing neuroblastoma cells (N2A, mouse) with the scaffolds. The results suggest that these chitosan tubular scaffolds are useful for the regeneration of tissues requiring a tubular scaffold.
基金Supported by the China Postdoctoral Science Foundation and the Tsinghua-Yue-Yuen Medical Science Fund
文摘Porous multi-channel chitosan conduits were fabricated using a novel phase-separation technique with an axial temperature gradient. First, porous chitosan tubes were made with a mold that was composed of two concentric polytetrafiuoroethylene tubes. Then 1%-3% (w/v) chitosan solution was injected into the chitosan tube while the two ends of the tube were closed with steel rods. Then the outside of the tube was wrapped with a layer of thermal insulating material to reduce the heat transfer through the outside, and the tubes were placed in a freezer. The resulting phase separation then occurred in the presence of an axial temperature gradient. The porosity, microtubule diameter, and orientation were controlled by adjusting the polymer concentration and temperature gradient. After the preparation course, no poisonous substances remained on the conduits. The mechanical properties, swelling, and biodegradability of the chitosan conduits were investigated, and a scanning electron microscope was used to observe the tubular morphology and growth of neuroblastoma cells (N2A, mouse) in the conduits. The results demonstrate that the multi-channel chitosan conduits have suitable mechanical strength, swelling, degradation properties, and nerve cell affinity, so they hold promise for use as neural tissue engineering scaffolds.