期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
利用CARS-CNN模型的土壤有机质含量高光谱预测
1
作者 李浩 于滈 +3 位作者 曹永研 郝子源 杨玮 李民赞 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第8期2303-2309,共7页
卷积神经网络(CNN)在数据特征提取方面具有巨大优势,能充分获取数据特征,相较于传统模型具有更好的泛化性。基于CNN开展了土壤有机质(SOM)含量高光谱预测方法及模型研究。以北京市昌平区上庄实验站的320个土壤样本为研究对象,提取可见光... 卷积神经网络(CNN)在数据特征提取方面具有巨大优势,能充分获取数据特征,相较于传统模型具有更好的泛化性。基于CNN开展了土壤有机质(SOM)含量高光谱预测方法及模型研究。以北京市昌平区上庄实验站的320个土壤样本为研究对象,提取可见光-近红外(VIS-NIR)350~1700 nm内的807个光谱波段,通过多元散射校正(MSC)和一阶微分变换进行光谱数据去噪和变换。分别使用连续投影算法(SPA)、竞争性自适应重加权算法(CARS)筛选敏感波长实现光谱数据降维。为解决传统手段泛化性差以及深层CNN网络复杂且负载过大的问题,基于CARS与SPA算法,提出一种基于6层卷积层的浅层CNN模型预测,并对比具有不同卷积尺寸和卷积数量的1D-CNN1、1D-CNN2以寻找最优网络参数。通过对比VGG16、支持向量回归(SVR)、最小二乘回归(PLSR)、随机森林(RF)建立预测模型在特征波长以及全波段的表现确定最佳模型。结果表明,相比于全谱波段和SPA筛选算法,基于CARS筛选特征波长建立的模型整体表现更好,波段数量被压缩至全波段的8%,有效实现了光谱数据的降维。对比全波段数据,基于CARS筛选波长的1D-CNN1、1D-CNN2的表现更好,模型预测R2分别提升了0.028,0.018;RMSE分别降低了0.150和0.107 g·kg^(-1)。整体上,基于CARS的1D-CNN1模型表现最好,预测R2=0.846,RMSE=3.145 g·kg^(-1),降低了网络负载的同时提高了模型精度,同时也证明了小尺寸卷积的表现优于更多数量的大尺寸卷积,能够更好的获取数据特征。通过CARS筛选特征波长结合浅层CNN建立SOM含量预测模型,为建立高精度的SOM含量预测模型提供了方法与参考。 展开更多
关键词 土壤有机质 卷积神经网络 高光谱 精细农业
下载PDF
基于多光谱图像的土壤有机质含量检测系统与APP研究
2
作者 杨玮 于滈 +2 位作者 李浩 曹永研 郝子源 《农业机械学报》 EI CAS CSCD 北大核心 2023年第9期270-278,共9页
受到土壤种类、水分等客观因素的干扰,基于图像预测土壤有机质(Soil organic matter, SOM)含量与传统方法在检测精度上仍存在差距,限制了相关技术的推广和普及。为提升基于图像预测SOM含量的精度,本研究提出N_DenseNet网络模型,在DenseN... 受到土壤种类、水分等客观因素的干扰,基于图像预测土壤有机质(Soil organic matter, SOM)含量与传统方法在检测精度上仍存在差距,限制了相关技术的推广和普及。为提升基于图像预测SOM含量的精度,本研究提出N_DenseNet网络模型,在DenseNet169基础上加入多尺度池化模块,通过获取更多的维度特征提升模型的性能,并结合Android端开发SOM实时检测应用程序(APP),通过内网透射实现PC端与手机端数据的及时传输。以黑龙江省友谊县、北京市昌平区、山东省泰安市3地的350份土样为基础,通过手机以及多光谱无人机获取原位土壤的高清图像,R波段、红边波段与近红外波段图像,以丰富数据信息,并通过室内胁迫的方式拍摄土壤样品在不同水分梯度下的图像缓解水分对图像造成的影响。对比不同深度学习模型,基于多光谱图像数据训练的N_DenseNet表现最好,整体表现优于DenseNet169,测试集R~2为0.833,RMSE为3.943 g/kg,R~2相比于可见光数据提升0.016,证明了训练过程加入R波段与红边和近红外波段图像后有助于提升模型的性能,证明了该方法的可行性。手机端APP与后台端数据相连实现数据实时传输,实现了田间土样SOM含量的实时预测,经田间试验验证,模型预测集R~2为0.805,检测时间为2.8 s,满足了田间SOM含量检测的需求,为SOM含量实时检测提供了新的思路。 展开更多
关键词 土壤有机质 检测系统 多光谱图像 深度学习 ANDROID APP
下载PDF
基于水分和粒度的土壤有机质特征波长提取与预测模型 被引量:3
3
作者 曹永研 杨玮 +2 位作者 王懂 李浩 孟超 《农业机械学报》 EI CAS CSCD 北大核心 2022年第S01期241-248,共8页
为减少水分、粒度对传统方式选取特征波长建立的土壤有机质预测模型的影响,本文提出新的特征波长提取方法。采集中国农业大学上庄实验站土壤样本60份,将样本自然风干后一分为二,一份配成5个粒度梯度(粒径2~2.5 mm、1.43~2 mm、1~1.43 mm... 为减少水分、粒度对传统方式选取特征波长建立的土壤有机质预测模型的影响,本文提出新的特征波长提取方法。采集中国农业大学上庄实验站土壤样本60份,将样本自然风干后一分为二,一份配成5个粒度梯度(粒径2~2.5 mm、1.43~2 mm、1~1.43 mm、0.6~1 mm、0~0.6 mm),另一份过0.6 mm筛后配成5个水分梯度(含水率5%、10%、15%、20%、25%)。通过标准仪器分别获取土壤有机质含量真值和土壤光谱信息,使用随机蛙跳算法进行特征波长提取,每个水分、粒度梯度下分别选取7个与土壤有机质含量真值相关性较高的波长作为对应梯度下选取的特征波长,分别建立多元线性回归(MLR)、偏最小二乘(PLS)、随机森林(RF)模型,结果表明:随着含水率增高,3种模型的建模集和预测集决定系数R^(2)基本呈减小趋势;在2~2.5 mm粒度梯度下,3种模型的建模集和预测集R^(2)最低,在0~0.6 mm梯度下,建模集和预测集R^(2)最高,其余梯度下,建模集和预测集R^(2)接近。结合滤光片带通范围(±15 nm),挑选出水分梯度下相同或者接近的8个土壤有机质特征波长,粒度梯度下选取6个特征波长,最终结合化学键特性在水分梯度和粒度梯度下确定的14个特征波长下剔除了6个,确定8个特征波长:932、999、1083、1191、1316、1356、1583、1626 nm。分别建立MLR、PLS、RF模型,结果表明:最终选取的有机质特征波长建立的3种模型建模集R^(2)均不低于0.8、预测集R^(2)均不低于0.75,其中PLS预测效果最佳,建模集、预测集R^(2)分别为0.8809、0.8402。本研究所确定的有机质特征波长建立的模型具有更好的适用性和预测效果,相比于传统方式,一定程度上消除水分、粒度对预测的影响。 展开更多
关键词 光谱 土壤有机质 特征波段 水分 粒度
下载PDF
基于近红外光谱信息的土壤电导率预测模型研究 被引量:2
4
作者 王懂 杨玮 +2 位作者 曹永研 孟超 李民赞 《农业机械学报》 EI CAS CSCD 北大核心 2022年第S01期218-223,共6页
利用土壤含水率与近红外光谱土壤反射率和土壤电导率三者之间的关系,以土壤含水率为中间变量,间接表达土壤光谱反射率和土壤电导率之间的关系。土壤含水率与土壤光谱反射率存在指数关系,土壤含水率与土壤电导率存在线性关系,消除中间变... 利用土壤含水率与近红外光谱土壤反射率和土壤电导率三者之间的关系,以土壤含水率为中间变量,间接表达土壤光谱反射率和土壤电导率之间的关系。土壤含水率与土壤光谱反射率存在指数关系,土壤含水率与土壤电导率存在线性关系,消除中间变量(土壤含水率),得到土壤光谱反射率和土壤电导率之间的关系。以土壤水分敏感波段1450 nm作为研究对象,研究土壤电导率的预测模型,分别建立指数预测模型和对数预测模型,并分别对两种模型进行验证。本文实验建模集样本72个,验证集样本48个,土壤电导率对数预测模型R^(2)达0.80,土壤电导率指数预测模型R^(2)达0.85,预测效果均可满足农田电导率估算,但对数模型在土壤电导率较低区间预测效果不理想,因此土壤电导率指数预测模型预测效果优于对数模型的预测效果。研究结果表明,土壤光谱反射率预测土壤电导率的方案可行,并为光谱信息预测土壤电导率提供了新思路。 展开更多
关键词 土壤电导率 土壤含水率 土壤光谱反射率 近红外光谱
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部