In this manuscript, a series of catalyst SG n-[VVO2-PAMAM-MSA] (SG silica gel, PAMAM polyamidoamine, MSA 5-methyl salicylaldehyde, n=0, 1, 2, 3) was prepared and their structures were fully characterized by Fourier tr...In this manuscript, a series of catalyst SG n-[VVO2-PAMAM-MSA] (SG silica gel, PAMAM polyamidoamine, MSA 5-methyl salicylaldehyde, n=0, 1, 2, 3) was prepared and their structures were fully characterized by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and inductive coupled plasma emission spectrometer (ICP) etc. XPS revealed that the metal V and SG n-PAMAM-MSA combined more closely after the formation of Schiff base derivatives. Their catalytic activities for oxidation of dibenzothiophene were evaluated using tert-butyl hydroperoxide as oxidant. The results showed that the catalyst SG 2.0-[VVO2-PAMAM-MSA] presented good catalytic activity and recycling time. Meanwhile, the optimal condition for the catalytic oxidation of SG 2.0-[VVO2-PAMAM-MSA] was also investigated, which showed that when the oxidation temperature was 90 °C, time was 60 min, the O/S was 3:1, and the mass content of catalyst was 1%, the rate of desulfurization could reach 85.2%. Moreover, the catalyst can be recycled several times without significant decline in catalytic activity.展开更多
目的探讨虚拟现实(VR)技术在外科术后患者疼痛管理中的应用效果。方法计算机检索PubMed、Web of Science等8个数据库,搜集关于VR技术缓解外科术后患者疼痛的研究,检索时限为建库至2023年11月19日。由2名研究人员独立筛选文献、提取资料...目的探讨虚拟现实(VR)技术在外科术后患者疼痛管理中的应用效果。方法计算机检索PubMed、Web of Science等8个数据库,搜集关于VR技术缓解外科术后患者疼痛的研究,检索时限为建库至2023年11月19日。由2名研究人员独立筛选文献、提取资料并开展文献质量评价,使用RevMan 5.4软件进行Meta分析。结果纳入18篇文献。Meta分析结果显示,VR技术能降低患者术后静息状态下疼痛评分[MD=-1.13,95%CI(-1.29,-0.96),P<0.001]、术后12 h疼痛评分[MD=-0.49,95%CI(-0.73,-0.24),P<0.001]、术后24 h疼痛评分[MD=-0.73,95%CI(-0.92,-0.54)、P<0.001]、术后48 h疼痛评分[MD=-0.69,95%CI(-0.84,-0.53),P<0.001]、术后72 h疼痛评分[MD=-0.37,95%CI(-0.59,-0.16),P<0.001]、术后换药时疼痛评分[MD=-1.11,95%CI(-2.06,-0.16),P=0.02],且能提高患者术后舒适度[MD=8.31,95%CI(6.57,10.06),P<0.001]。结论作为非药物干预手段,VR技术可缓解外科患者术后疼痛,改善患者术后舒适度。但今后仍须开展大样本、高质量研究进一步验证VR技术的有效性。展开更多
Rational design and controllable synthesis of efficient electrocatalysts for water oxidation is of significant importance for the development of promising energy conversion systems, in particular integrated photoelect...Rational design and controllable synthesis of efficient electrocatalysts for water oxidation is of significant importance for the development of promising energy conversion systems, in particular integrated photoelectrochemical water splitting devices. Cobalt oxide(Co3O4) nanostructures with mixed valences(Ⅱ,Ⅲ)have been regarded as promising electrocatalysts for the oxygen evolution reaction(OER). They are able to promote catalytic support of OER but with only modest activity. Here, we demonstrate that the OER performance of cubic Co3O4 electrocatalyst is obviously improved when they are anchored on delaminated two-dimensional(2D) Ti3C2 MXene nanosheets. Upon activation the overpotential of the hybrid catalyst delivers 300 m V at a current density of 10 m A cm(2) in basic solutions, which is remarkably lower than those of Ti3C2 MXene and Co3O4 nanocubes. The strong interfacial electrostatic interactions between two components contribute to the exceptional catalytic performance and stability. The enhanced OER activity and facile synthesis make these Co3O4 nanocubes-decorated ultrathin 2D Ti3C2 MXene nanosheets useful for constructing efficient and stable electrodes for high-performance electrochemical water splitting.展开更多
基金Supported by the National Natural Science Foundation of China (20901063) the Natural Science Foundation of Hubei Province (2011CDB221)
文摘In this manuscript, a series of catalyst SG n-[VVO2-PAMAM-MSA] (SG silica gel, PAMAM polyamidoamine, MSA 5-methyl salicylaldehyde, n=0, 1, 2, 3) was prepared and their structures were fully characterized by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and inductive coupled plasma emission spectrometer (ICP) etc. XPS revealed that the metal V and SG n-PAMAM-MSA combined more closely after the formation of Schiff base derivatives. Their catalytic activities for oxidation of dibenzothiophene were evaluated using tert-butyl hydroperoxide as oxidant. The results showed that the catalyst SG 2.0-[VVO2-PAMAM-MSA] presented good catalytic activity and recycling time. Meanwhile, the optimal condition for the catalytic oxidation of SG 2.0-[VVO2-PAMAM-MSA] was also investigated, which showed that when the oxidation temperature was 90 °C, time was 60 min, the O/S was 3:1, and the mass content of catalyst was 1%, the rate of desulfurization could reach 85.2%. Moreover, the catalyst can be recycled several times without significant decline in catalytic activity.
基金financial support from the National Natural Science Foundation of China (21975129, 51902164)Natural Science Foundation of Jiangsu Province (BK20180777, BK20190759)+4 种基金Natural Science Foundation of Jiangsu Higher Education Institutions of China (18KJB430018, 19KJB430003)Scientific Research Foundation for Advanced Talents (CXL2018046)Science Innovation Foundation for Young Scientists (CX2018012)supported by Student’s Platform for Innovation and Entrepreneurship Training Program in Jiangsu Province (201810298029Z)Student’s Platform for Innovation and Entrepreneurship Training Program (2018NFUSPITP602)。
文摘Rational design and controllable synthesis of efficient electrocatalysts for water oxidation is of significant importance for the development of promising energy conversion systems, in particular integrated photoelectrochemical water splitting devices. Cobalt oxide(Co3O4) nanostructures with mixed valences(Ⅱ,Ⅲ)have been regarded as promising electrocatalysts for the oxygen evolution reaction(OER). They are able to promote catalytic support of OER but with only modest activity. Here, we demonstrate that the OER performance of cubic Co3O4 electrocatalyst is obviously improved when they are anchored on delaminated two-dimensional(2D) Ti3C2 MXene nanosheets. Upon activation the overpotential of the hybrid catalyst delivers 300 m V at a current density of 10 m A cm(2) in basic solutions, which is remarkably lower than those of Ti3C2 MXene and Co3O4 nanocubes. The strong interfacial electrostatic interactions between two components contribute to the exceptional catalytic performance and stability. The enhanced OER activity and facile synthesis make these Co3O4 nanocubes-decorated ultrathin 2D Ti3C2 MXene nanosheets useful for constructing efficient and stable electrodes for high-performance electrochemical water splitting.