期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
融合特征投影和负监督的文本分类
1
作者 冯兴杰 曹若轩 《计算机工程与科学》 CSCD 北大核心 2024年第10期1864-1874,共11页
用于分类的文本往往存在语义模糊、特征稀疏的问题,并且句中的某些词语含义会与文本真实标签所代表的语义不一致,这都会导致分类错误。针对上述问题,提出一种融合特征投影和负监督的多任务文本分类模型,主任务利用特征投影网络提取类别... 用于分类的文本往往存在语义模糊、特征稀疏的问题,并且句中的某些词语含义会与文本真实标签所代表的语义不一致,这都会导致分类错误。针对上述问题,提出一种融合特征投影和负监督的多任务文本分类模型,主任务利用特征投影网络提取类别特征明显的纯化向量并进行分类;辅助任务给予模型负监督,以扩大不同类别文本的向量差别,消除个别词语的负面影响。此外,使用RoBERTa和BiL-STM同时对正、负样本进行特征提取,捕捉丰富的语义信息。在THUCNews新闻标题分类和微粒贷语义相似度分析数据集上进行了实验,结果表明本文模型相比现有模型具有更好的效果。 展开更多
关键词 文本分类 特征投影 负监督 多任务模型 RoBERTa BiLSTM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部