期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于FPGA的卷积神经网络硬件加速器设计
被引量:
18
1
作者
秦华标
曹钦平
《电子与信息学报》
EI
CSCD
北大核心
2019年第11期2599-2605,共7页
针对卷积神经网络(CNN)计算量大、计算时间长的问题,该文提出一种基于现场可编程逻辑门阵列(FPGA)的卷积神经网络硬件加速器。首先通过深入分析卷积层的前向运算原理和探索卷积层运算的并行性,设计了一种输入通道并行、输出通道并行以...
针对卷积神经网络(CNN)计算量大、计算时间长的问题,该文提出一种基于现场可编程逻辑门阵列(FPGA)的卷积神经网络硬件加速器。首先通过深入分析卷积层的前向运算原理和探索卷积层运算的并行性,设计了一种输入通道并行、输出通道并行以及卷积窗口深度流水的硬件架构。然后在上述架构中设计了全并行乘法-加法树模块来加速卷积运算和高效的窗口缓存模块来实现卷积窗口的流水线操作。最后实验结果表明,该文提出的加速器能效比达到32.73 GOPS/W,比现有的解决方案高了34%,同时性能达到了317.86 GOPS。
展开更多
关键词
卷积神经网络
硬件加速
现场可编程逻辑门阵列
计算并行
深度流水
下载PDF
职称材料
题名
基于FPGA的卷积神经网络硬件加速器设计
被引量:
18
1
作者
秦华标
曹钦平
机构
华南理工大学电子与信息学院
出处
《电子与信息学报》
EI
CSCD
北大核心
2019年第11期2599-2605,共7页
基金
广东省科技计划项目(2014B090910002)~~
文摘
针对卷积神经网络(CNN)计算量大、计算时间长的问题,该文提出一种基于现场可编程逻辑门阵列(FPGA)的卷积神经网络硬件加速器。首先通过深入分析卷积层的前向运算原理和探索卷积层运算的并行性,设计了一种输入通道并行、输出通道并行以及卷积窗口深度流水的硬件架构。然后在上述架构中设计了全并行乘法-加法树模块来加速卷积运算和高效的窗口缓存模块来实现卷积窗口的流水线操作。最后实验结果表明,该文提出的加速器能效比达到32.73 GOPS/W,比现有的解决方案高了34%,同时性能达到了317.86 GOPS。
关键词
卷积神经网络
硬件加速
现场可编程逻辑门阵列
计算并行
深度流水
Keywords
Convolutional Neural Networks(CNN)
Hardware acceleration
FPGA
Parallel computation
Deep pipeline
分类号
TP331 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于FPGA的卷积神经网络硬件加速器设计
秦华标
曹钦平
《电子与信息学报》
EI
CSCD
北大核心
2019
18
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部