皮肤病变分割是皮肤病诊断的必要步骤。受病变区域形状不规则、颜色不均匀,以及边界模糊等因素的影响,皮肤病变分割面临诸多困难。针对上述问题,本文提出DSLK-UNet(Dilation Stage Large Kernel UNet)的皮肤病变分割方法。为充分利用多...皮肤病变分割是皮肤病诊断的必要步骤。受病变区域形状不规则、颜色不均匀,以及边界模糊等因素的影响,皮肤病变分割面临诸多困难。针对上述问题,本文提出DSLK-UNet(Dilation Stage Large Kernel UNet)的皮肤病变分割方法。为充分利用多尺度信息,设计了空洞阶梯连接模块,并将其嵌入到编码器和解码器,实现上下文信息的有效捕获;综合考虑效率和性能,基于深度和空间可分离卷积提出一种大核卷积融合模块,优化小目标细节信息的提取;最后,基于Laplace算法构建边缘损失函数,提高模型对弱边界的检测能力。为验证本文算法有效性,在ISIC 2018数据集上进行测试,实验结果表明,该方法可以有效分割皮肤病变,分割结果的相似系数(Dice)、平均交并比(MIoU)、准确率(ACC)和F1-Score分别达到了92.86%、89.10%、97.00%和89.28%,分割性能高于现有的皮肤病变分割算法,且相较于其他方法,该方法对于受毛发干扰、边界模糊的皮肤病变具有分割优势。展开更多