期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Underwater Image Enhancement Based on Multi-scale Adversarial Network
1
作者 ZENG Jun-yang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期70-77,共8页
In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of ea... In this study,an underwater image enhancement method based on multi-scale adversarial network was proposed to solve the problem of detail blur and color distortion in underwater images.Firstly,the local features of each layer were enhanced into the global features by the proposed residual dense block,which ensured that the generated images retain more details.Secondly,a multi-scale structure was adopted to extract multi-scale semantic features of the original images.Finally,the features obtained from the dual channels were fused by an adaptive fusion module to further optimize the features.The discriminant network adopted the structure of the Markov discriminator.In addition,by constructing mean square error,structural similarity,and perceived color loss function,the generated image is consistent with the reference image in structure,color,and content.The experimental results showed that the enhanced underwater image deblurring effect of the proposed algorithm was good and the problem of underwater image color bias was effectively improved.In both subjective and objective evaluation indexes,the experimental results of the proposed algorithm are better than those of the comparison algorithm. 展开更多
关键词 Underwater image enhancement Generative adversarial network Multi-scale feature extraction Residual dense block
下载PDF
云南宣威肺癌高发区固体燃料燃烧排放颗粒的物理化学特征 被引量:1
2
作者 肖凯 彭加仙 +6 位作者 谢婷婷 曾俊扬 姚传贺 Myat Sandar Win 吕森林 王青躍 Yonemochi Shinich 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期389-399,共11页
在云南宣威肺癌高发区采集了固体燃料(煤炭、木材)燃烧排放的大气颗粒物样品,利用扫描电镜(scanning electron microscopy,SEM)、能量色散X射线光谱仪(energy dispersive X-ray spectroscopy,EDX)对796个颗粒物进行了分析.根据颗粒物的... 在云南宣威肺癌高发区采集了固体燃料(煤炭、木材)燃烧排放的大气颗粒物样品,利用扫描电镜(scanning electron microscopy,SEM)、能量色散X射线光谱仪(energy dispersive X-ray spectroscopy,EDX)对796个颗粒物进行了分析.根据颗粒物的显微特征和化学元素组成,将其分为矿物颗粒物、飞灰、烟尘集合体和未识别颗粒物4类.采用P(X)值法将矿物颗粒物进一步分为富Si、富S、富Ca、富Fe、富Ti、富Al、富Na和其他8种不同类型,其中富Si、富Ca、富Fe、富S分别占燃煤颗粒物和生物质颗粒物的44.47%,20.49%,8.85%,1.22%和55.91%,17.27%,6.36%,2.27%.化学元素分析结果显示:颗粒物中Al,Fe,Ca,Mg等地壳元素的质量浓度较高,重金属化学元素的质量浓度较低;煤炭燃烧排放的颗粒物的化学元素分析结果与单颗粒分析结果之间存在较好的正相关关系(R2=0.63). 展开更多
关键词 肺癌 固体燃料 扫描电镜 能量色散X射线光谱仪 P(X)值
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部