基于高斯动态时间规整核函数(Gaussian Dynamic Time Warping kernel)的支持向量机(GDTW-SVM)在联机手写识别中有较高的识别率,但是存在计算复杂度高的问题。结合联机手写识别中特征向量的特点,提出了通过引入控制参数来约束GDTW最优对...基于高斯动态时间规整核函数(Gaussian Dynamic Time Warping kernel)的支持向量机(GDTW-SVM)在联机手写识别中有较高的识别率,但是存在计算复杂度高的问题。结合联机手写识别中特征向量的特点,提出了通过引入控制参数来约束GDTW最优对齐路径计算空间的方法,优化了GDTW核函数。然后,使用联机手写识别数据库UJIpenchar2进行实验。实验结果表明,该优化方法不仅可以减少支持向量的数目,而且提高了GDTW-SVM算法运行的效率。展开更多
文摘基于高斯动态时间规整核函数(Gaussian Dynamic Time Warping kernel)的支持向量机(GDTW-SVM)在联机手写识别中有较高的识别率,但是存在计算复杂度高的问题。结合联机手写识别中特征向量的特点,提出了通过引入控制参数来约束GDTW最优对齐路径计算空间的方法,优化了GDTW核函数。然后,使用联机手写识别数据库UJIpenchar2进行实验。实验结果表明,该优化方法不仅可以减少支持向量的数目,而且提高了GDTW-SVM算法运行的效率。