-
题名基于核偏最小二乘法的板形过程监测
- 1
-
-
作者
曾卫仔
马兵智
宋浩源
齐春雨
-
机构
北京首钢冷轧薄板有限公司
-
出处
《金属世界》
CAS
2021年第6期12-17,共6页
-
文摘
随着时代的发展和科技的进步,各行各业对于板材的质量和产量有了更高的要求。在实际应用中,大多数系统的内部机理十分复杂,传统的机理模型已无法满足对系统内部参数进行分析、表达。本文基于偏最小二乘法(PLS)提出一种核偏最小二乘法(KPLS)的板形过程监测方法,结果表明KPLS模型平均故障检测率为96.42%,误报率为10.14%,说明该方法用于板形的过程监测具有可行性。
-
关键词
核偏最小二乘法
过程监测
内部参数
故障检测率
误报率
内部机理
模型平均
机理模型
-
分类号
TG335
[金属学及工艺—金属压力加工]
-
-
题名基于BP神经网络的板形预测
被引量:1
- 2
-
-
作者
马兵智
曾卫仔
宋浩源
商光鹏
-
机构
北京首钢冷轧薄板有限公司
-
出处
《金属世界》
CAS
2021年第6期47-50,共4页
-
文摘
板带材的板形精度一直是研究的重点。在实际生产过程中影响板形精度的因素很多而且因素之间存在非线性、强耦合的关系,基于板形控制机理的传统数学模型很难准确表达其中的关系,而基于数据驱动的非机理模型则能取得很好的结果。BP神经网络作为一种发展成熟的算法可以作为一种新的预测手段应用在板形的预测工作中。因此,本文将BP神经网络应用于板形的预测研究中,讨论了基于BP神经网络的板形预测模型的可行性以及应用的优势,重点介绍BP神经网络对板形预测带来的积极意义。BP神经网络在对即时板形缺陷系数进行预测时,能够较好的接近实际的拟合值。BP网络在训练过程中,在50轮训练后基本收敛,并且整个训练过程没有产生过拟合现象。BP神经网络对测试集进行预测,能够有效的反映板形的变化情况,且对一次、三次板形缺陷系数的预测结果较好。
-
关键词
BP神经网络
数据驱动
BP网络
预测手段
板形预测
拟合值
测试集
板形控制
-
分类号
TG335
[金属学及工艺—金属压力加工]
TP183
[自动化与计算机技术—控制理论与控制工程]
-