针对分辨率变化、视角变化和认证集单样本等实际条件下的人脸识别问题,提出了一种基于回归的人脸识别算法。该算法采用核主成分分析法(kernel principal component analysis)分别提取侧面低分辨率和正面高分辨率人脸特征,利用Procruste...针对分辨率变化、视角变化和认证集单样本等实际条件下的人脸识别问题,提出了一种基于回归的人脸识别算法。该算法采用核主成分分析法(kernel principal component analysis)分别提取侧面低分辨率和正面高分辨率人脸特征,利用Procrustes分析建立每一种侧面视角低分辨率KPCA特征和正面高分辨率KPCA特征间的映射关系,从而获得对应的回归模型。根据这些回归模型,即可得到测试侧面低分辨率人脸对应的正面高分辨率KPCA特征,并通过最近邻分类器进行识别。在标准图库上的实验表明,与基于线性模型的人脸识别对比算法相比,本文所提算法识别率提高了4%至36%,而在线测试时间仅比最快的对比算法多1.087ms。展开更多
文摘针对分辨率变化、视角变化和认证集单样本等实际条件下的人脸识别问题,提出了一种基于回归的人脸识别算法。该算法采用核主成分分析法(kernel principal component analysis)分别提取侧面低分辨率和正面高分辨率人脸特征,利用Procrustes分析建立每一种侧面视角低分辨率KPCA特征和正面高分辨率KPCA特征间的映射关系,从而获得对应的回归模型。根据这些回归模型,即可得到测试侧面低分辨率人脸对应的正面高分辨率KPCA特征,并通过最近邻分类器进行识别。在标准图库上的实验表明,与基于线性模型的人脸识别对比算法相比,本文所提算法识别率提高了4%至36%,而在线测试时间仅比最快的对比算法多1.087ms。