多台无人机协同完成野外传感器数据采集的工作中,建立具有精确能耗模型的多无人机路径规划问题模型尤为重要。提出了带转角能耗多无人机路径规划问题(multi-UAV path planning with angular energy consumption,MUPP-AEC)模型,该模型考...多台无人机协同完成野外传感器数据采集的工作中,建立具有精确能耗模型的多无人机路径规划问题模型尤为重要。提出了带转角能耗多无人机路径规划问题(multi-UAV path planning with angular energy consumption,MUPP-AEC)模型,该模型考虑了无人机在加速、减速、匀速、转角等飞行条件下的能耗差异。针对MUPP-AEC的特点,提出目标空间聚类离散头脑风暴优化算法(discrete brain storm optimization algorithm in objective space,DBSO-OS)。该算法采用个体空间整数编码和带2-opt的分阶段贪婪法解码策略,并对扰动算子和个体更新算子进行了离散化定义。个体更新算子中采用了混合随机反转变换和部分匹配变换的生成策略。实验结果表明:DBSO-OS能有效地求解MUPP-AEC;所提离散头脑风暴算子在全局收敛能力、求解精度和稳定性等方面均优于传统头脑风暴算子;在中小规模测试算例和较大规模测试算例的测试中,DBSO-OS优于对比算法。展开更多
文摘多台无人机协同完成野外传感器数据采集的工作中,建立具有精确能耗模型的多无人机路径规划问题模型尤为重要。提出了带转角能耗多无人机路径规划问题(multi-UAV path planning with angular energy consumption,MUPP-AEC)模型,该模型考虑了无人机在加速、减速、匀速、转角等飞行条件下的能耗差异。针对MUPP-AEC的特点,提出目标空间聚类离散头脑风暴优化算法(discrete brain storm optimization algorithm in objective space,DBSO-OS)。该算法采用个体空间整数编码和带2-opt的分阶段贪婪法解码策略,并对扰动算子和个体更新算子进行了离散化定义。个体更新算子中采用了混合随机反转变换和部分匹配变换的生成策略。实验结果表明:DBSO-OS能有效地求解MUPP-AEC;所提离散头脑风暴算子在全局收敛能力、求解精度和稳定性等方面均优于传统头脑风暴算子;在中小规模测试算例和较大规模测试算例的测试中,DBSO-OS优于对比算法。