期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于多尺度语义的目标检测方法 被引量:2
1
作者 曾溢良 张浩 吕志武 《计算机工程与设计》 北大核心 2024年第1期252-260,共9页
针对基于卷积神经网络(convolutional neural network,CNN)的检测方法只关注目标的自身信息,忽略了语义信息,限制目标检测精度提高的问题,提出一种多尺度语义提取网络,分别提取CNN多层特征图的语义信息并融合,实现目标全局语义和局部语... 针对基于卷积神经网络(convolutional neural network,CNN)的检测方法只关注目标的自身信息,忽略了语义信息,限制目标检测精度提高的问题,提出一种多尺度语义提取网络,分别提取CNN多层特征图的语义信息并融合,实现目标全局语义和局部语义的提取。在此基础上,将自身特征与语义特征融合,实现目标检测框架中自身特征和语义特征的编码。实验结果表明,该方法与原始的目标检测网络相比,检测精度有明显提高,尤其是对混叠目标和小目标具有良好的检测效果。 展开更多
关键词 目标检测 深度学习 语义信息 卷积神经网络 多层特征融合 混叠目标 小目标
下载PDF
滑动置信度约束的红外弱小目标跟踪算法研究 被引量:9
2
作者 曾溢良 蓝金辉 邹金霖 《兵工学报》 EI CAS CSCD 北大核心 2017年第9期1771-1778,共8页
为了提高红外视频弱小目标的跟踪精度,提出了滑动置信度约束的弱小目标跟踪方法。在快速自适应中值滤波的红外图像背景抑制技术的基础上,设计了正交变换和置信域约束的轨迹预测,利用加权参数增强目标函数的收敛性能,提高下一位置初的预... 为了提高红外视频弱小目标的跟踪精度,提出了滑动置信度约束的弱小目标跟踪方法。在快速自适应中值滤波的红外图像背景抑制技术的基础上,设计了正交变换和置信域约束的轨迹预测,利用加权参数增强目标函数的收敛性能,提高下一位置初的预测准确度;通过轨迹相邻点的位置差计算搜索窗口的大小,搜索与之相匹配的特征点进行关联处理,完成对初预测点的筛选;以滑动轨迹置信度检验为准则判决轨迹的真实性,并进行目标轨迹更新以实现对弱小目标的准确跟踪。通过红外弱小目标视频对所提算法进行了实验验证,结果表明,该算法对红外弱小目标的跟踪轨迹误差有较小的均方偏差与均方差,在噪声消除和对图像整体信息保护方面都具有良好的性能。 展开更多
关键词 信息处理技术 红外小目标 目标识别 目标跟踪 背景抑制
下载PDF
最优代表向量法及其在冰川分类中的应用
3
作者 曾溢良 张胜 《北京理工大学学报》 EI CAS CSCD 北大核心 2017年第10期1067-1071,共5页
针对同物异谱现象以及分类过程中样本代表性差、人工参数设置等原因导致高光谱遥感影像分类精度差的问题,提出了一种样本集优化的最优代表向量分类法,对感兴趣区中的样本进行密度峰值聚类提纯,并对每类地物提纯后样本的均值向量集进行... 针对同物异谱现象以及分类过程中样本代表性差、人工参数设置等原因导致高光谱遥感影像分类精度差的问题,提出了一种样本集优化的最优代表向量分类法,对感兴趣区中的样本进行密度峰值聚类提纯,并对每类地物提纯后样本的均值向量集进行隶属度聚类择优,获取最优代表向量集作为该类地物的中心向量,最终依据距离准则进行分类.通过对比实验验证,本文算法总体分类精度高于90%,表明最优代表向量分类法能够有效消除样本差异性的影响,提高冰川分类精度. 展开更多
关键词 高光谱遥感 图像分类 最优代表向量 密度峰值聚类 冰川分类
下载PDF
高光谱遥感影像混合像元分解研究进展 被引量:49
4
作者 蓝金辉 邹金霖 +3 位作者 郝彦爽 曾溢良 张玉珍 董铭巍 《遥感学报》 EI CSCD 北大核心 2018年第1期13-27,共15页
受高光谱成像仪低空间分辨率及复杂地物的影响,高光谱遥感图像存在大量混合像元。为提高地表分类精度以及满足亚像元级目标探测的需求,混合像元分解技术一直是高光谱遥感研究热点之一。本文主要对高光谱混合像元分解技术中的核心问题:... 受高光谱成像仪低空间分辨率及复杂地物的影响,高光谱遥感图像存在大量混合像元。为提高地表分类精度以及满足亚像元级目标探测的需求,混合像元分解技术一直是高光谱遥感研究热点之一。本文主要对高光谱混合像元分解技术中的核心问题:端元数目估计、端元提取算法、丰度估计算法进行综述,系统地分析了各种典型算法的原理及优缺点,进一步阐述研究过程中建立高精度遥感混合反演模型与遥感产品业务化中的混合像元分解技术难题,同时针对今后混合像元分解技术发展方向,指出在继续引入新型算法理论方法基础上,结合用户应用需求,推进高光谱混合像元分解算法业务化应用,为高光谱遥感工程化应用提供支持。 展开更多
关键词 高光谱影像 线性解混 端元提取 丰度估计
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部