期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于VGG的慢性鼻窦炎分类模型研究
1
作者 张宁 马瑞霞 +8 位作者 任海玲 申学良 贺娇 赵玉桐 杨凤霞 刘铭 王乐 章峪侨 曾芷灵 《临床耳鼻咽喉头颈外科杂志》 CAS CSCD 北大核心 2024年第7期624-630,共7页
目的搭建基于VGG的慢性鼻窦炎计算机辅助诊断模型,并评价其效能。方法①收集5000帧已确诊的鼻窦CT图像,将其分为正常组1000帧图像(其中,正常的上颌窦、额窦、筛窦、蝶窦影像图像各250帧)及异常组4000帧图像(其中,上颌窦炎、额窦炎、筛... 目的搭建基于VGG的慢性鼻窦炎计算机辅助诊断模型,并评价其效能。方法①收集5000帧已确诊的鼻窦CT图像,将其分为正常组1000帧图像(其中,正常的上颌窦、额窦、筛窦、蝶窦影像图像各250帧)及异常组4000帧图像(其中,上颌窦炎、额窦炎、筛窦炎、蝶窦炎影像图像各1000帧),对图像进行大小归一化及分割预处理;②训练模型并对其进行仿真实验,分别得到正常组,蝶窦炎组,额窦炎组,筛窦炎组以及上颌窦炎组5个分类模型,从准确度、精确度、灵敏度、特异度、判读时间及ROC曲线下面积(AUC)6个维度,客观评价模型的分类效能;③随机选取200帧图像,通过模型与低年资医师组、中年资医师组、高年资医师组分别阅片构成对比试验,结合临床通过以上评价指标客观评价模型的效能。结果①仿真实验:整个模型的识别准确度为83.94%,精确度为89.52%,灵敏度为83.94%,特异度为95.99%,平均每帧图像判读时间为0.20 s;蝶窦炎的AUC为0.865(95%CI 0.849~0.881),额窦炎的AUC为0.924(0.911~0.936),筛窦炎的AUC为0.895(0.880~0.909),上颌窦炎的AUC为0.974(0.967~0.982)。②对比实验:在识别准确度上,模型为84.52%,低年资医师组为78.5%、中年资医师组为80.5%,高年资医师组为83.5%;在识别精确度上,模型为85.67%,低年资医师组为79.72%,中年资医师组为82.67%,高年资医师组为83.66%;在识别灵敏度上,模型为84.52%,低年资医师组为78.50%,中年资医师组为80.50%,高年资医师组为83.50%;在识别特异度上,模型为96.58%,低年资医师组为94.63%,中年资医师组为95.13%,高年资医师组为95.88%;在耗时上,模型平均每帧图像为0.20 s,低年资医师组平均每帧图像为2.35 s,中年资医师组平均每帧图像为1.98 s,高年资医师组平均每帧图像为2.19 s。结论本研究强调了基于深度学习的慢性鼻窦炎人工智能诊断模型分类诊断慢性鼻窦炎的可能性;基于深度学习的慢性鼻窦炎人工智能诊断模型分类性能好,具有较高的诊断效能。 展开更多
关键词 VGG 医学图像 慢性鼻窦炎 计算机辅助诊断
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部