基于预训练微调的分类方法通常需要大量带标注的数据,导致无法应用于小样本分类任务。因此,针对中文小样本新闻主题分类任务,提出一种基于知识增强和提示学习的分类方法KPL(Knowledge enhancement and Prompt Learning)。首先,利用预训...基于预训练微调的分类方法通常需要大量带标注的数据,导致无法应用于小样本分类任务。因此,针对中文小样本新闻主题分类任务,提出一种基于知识增强和提示学习的分类方法KPL(Knowledge enhancement and Prompt Learning)。首先,利用预训练模型在训练集上学习最优的提示模板;其次,将提示模板与输入文本结合,使分类任务转化为完形填空任务;同时利用外部知识扩充标签词空间,丰富标签词的语义信息;最后,对预测的标签词与原始的标签进行映射。通过在THUCNews、SHNews和Toutiao这3个新闻数据集上进行随机采样,形成小样本训练集和验证集进行实验。实验结果表明,所提方法在上述数据集上的1-shot、5-shot、10-shot和20-shot任务上整体表现有所提升,尤其在1-shot任务上提升效果突出,与基线小样本分类方法相比,准确率分别提高了7.59、2.11和3.10个百分点以上,验证了KPL在小样本新闻主题分类任务上的有效性。展开更多
文摘基于预训练微调的分类方法通常需要大量带标注的数据,导致无法应用于小样本分类任务。因此,针对中文小样本新闻主题分类任务,提出一种基于知识增强和提示学习的分类方法KPL(Knowledge enhancement and Prompt Learning)。首先,利用预训练模型在训练集上学习最优的提示模板;其次,将提示模板与输入文本结合,使分类任务转化为完形填空任务;同时利用外部知识扩充标签词空间,丰富标签词的语义信息;最后,对预测的标签词与原始的标签进行映射。通过在THUCNews、SHNews和Toutiao这3个新闻数据集上进行随机采样,形成小样本训练集和验证集进行实验。实验结果表明,所提方法在上述数据集上的1-shot、5-shot、10-shot和20-shot任务上整体表现有所提升,尤其在1-shot任务上提升效果突出,与基线小样本分类方法相比,准确率分别提高了7.59、2.11和3.10个百分点以上,验证了KPL在小样本新闻主题分类任务上的有效性。