期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
识别蛋白质配体绑定残基的生物计算方法综述 被引量:3
1
作者 於东军 朱一亨 胡俊 《数据采集与处理》 CSCD 北大核心 2018年第2期195-206,共12页
蛋白质与配体相互作用在生命过程中是普遍存在且不可或缺的,这种相互作用在生物分子的识别和信号传递过程中起着非常重要的作用。识别出蛋白质与配体相互作用的绑定残基对蛋白质功能研究、药物设计和筛选都有着重要的科学意义,而生物计... 蛋白质与配体相互作用在生命过程中是普遍存在且不可或缺的,这种相互作用在生物分子的识别和信号传递过程中起着非常重要的作用。识别出蛋白质与配体相互作用的绑定残基对蛋白质功能研究、药物设计和筛选都有着重要的科学意义,而生物计算方法是蛋白质与配体绑定残基预测研究中的一种重要手段。本文首先给出了蛋白质与配体相互作用的绑定残基的一般性定义;其次,总结出了一种蛋白质与配体绑定残基预测方法的分类体系,并对其中一些代表性的预测方法进行了简要阐述;再次,给出了蛋白质与配体绑定残基预测研究中常用的数据库和评价指标,并通过在相关数据集上进行实验比较了具有代表性的预测方法的性能;最后,对若干挑战性问题进行分析并预测该领域未来的研究方向,以期对相关研究提供一定的参考。 展开更多
关键词 蛋白质与配体相互作用 绑定残基预测 分类体系 性能比较
下载PDF
基于遗传算法和支持向量回归的锂电池健康状态预测 被引量:29
2
作者 刘皓 胡明昕 +1 位作者 朱一亨 於东军 《南京理工大学学报》 EI CAS CSCD 北大核心 2018年第3期329-334,351,共7页
为了提高锂电池健康状态(SOH)的预测精度,该文提出了1种基于遗传算法和支持向量回归(GA-SVR)的联合算法。通过GA解决SVR模型中的超参数优化问题。GA-SVR随机生成1组染色体,每个染色体包含了相应的SVR超参数信息。利用适应度函数计算出... 为了提高锂电池健康状态(SOH)的预测精度,该文提出了1种基于遗传算法和支持向量回归(GA-SVR)的联合算法。通过GA解决SVR模型中的超参数优化问题。GA-SVR随机生成1组染色体,每个染色体包含了相应的SVR超参数信息。利用适应度函数计算出每条染色体的适应度值。根据适应度值对染色体进行选择、基因重组和变异等遗传操作,从而更新染色体的超参数信息。经过多次迭代后,找到适应度最大的染色体。从该染色体中提取相应的超参数信息,并训练最终的SVR预测模型。在美国国家航空航天局(NASA)锂电池数据集上的实验结果表明,该文算法优于基于混合像元核函数的高斯过程回归(SMK-GPR)算法、基于多尺度周期协方差函数的高斯过程回归(P-MGPR)算法、基于多尺度平方指数函数的高斯过程回归(SE-MGPR)算法和改进的基于粒子群优化的支持向量回归(IPSO-SVR)算法。 展开更多
关键词 遗传算法 支持向量回归 锂电池 健康状态 超参数优化
下载PDF
非同义单核苷酸变异致病性预测研究综述 被引量:2
3
作者 葛芳 胡俊 +1 位作者 朱一亨 於东军 《南京理工大学学报》 EI CAS CSCD 北大核心 2021年第1期1-17,共17页
超过6000种人类疾病是由非同义单核苷酸变异(Non-synonymous single nucleotide variations,nsSNVs)引发的,快速准确地预测nsSNVs的致病性,有助于理解发病原理和设计新药物,也是生物信息领域的重要研究课题之一。该文给出了nsSNVs致病... 超过6000种人类疾病是由非同义单核苷酸变异(Non-synonymous single nucleotide variations,nsSNVs)引发的,快速准确地预测nsSNVs的致病性,有助于理解发病原理和设计新药物,也是生物信息领域的重要研究课题之一。该文给出了nsSNVs致病性研究的重要意义与背景知识;总结了国内外研究的主流方法,包括基于突变频率的方法、基于通路的方法、结合基因组和转录信息的方法、基于序列进化保守性的方法、基于序列和结构混合特征的方法以及综合评价类方法,对代表性方法进行了阐述;给出了nsSNVs致病性研究中常用的数据库、特征表示方法以及性能评价指标,多角度地对12种nsSNVs致病性预测方法进行了比较;最后,展望了nsSNVs致病性预测中可能取得突破的若干研究方向。 展开更多
关键词 非同义单核苷酸变异 致病性预测 致病性突变 癌症驱动突变 生物计算
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部