文(1)中有这样一个结论:奇函数如果存在反函数,其反函数也是奇函数,但偶函数一定不存在反函数.笔者认为偶函数一定不存在反函数是一个错误结论.从映射的概念可以知道,函数实际上就是集合A到集合 B 的映射,其中 A、B 都是非空的数的集合...文(1)中有这样一个结论:奇函数如果存在反函数,其反函数也是奇函数,但偶函数一定不存在反函数.笔者认为偶函数一定不存在反函数是一个错误结论.从映射的概念可以知道,函数实际上就是集合A到集合 B 的映射,其中 A、B 都是非空的数的集合.对于自变量 x 在定义域 A 内的任何一个值。在集合 B 中都有唯一的函数值 y 和它对应;自变量的值相当于原象。展开更多
1. Find the number of subsets of {1,2,3,4,5,6,7,8} that are subsets of neither {1,2,3,4,5} nor {4,5,6,7,8}.译:求集合{1,2,3,4,5,6,7,8}满足下列条件的子集个数.这个子集既不是{1,2,3,4,5}的子集,也不是{4,5,6...1. Find the number of subsets of {1,2,3,4,5,6,7,8} that are subsets of neither {1,2,3,4,5} nor {4,5,6,7,8}.译:求集合{1,2,3,4,5,6,7,8}满足下列条件的子集个数.这个子集既不是{1,2,3,4,5}的子集,也不是{4,5,6,7,8}的子集.展开更多
文摘文(1)中有这样一个结论:奇函数如果存在反函数,其反函数也是奇函数,但偶函数一定不存在反函数.笔者认为偶函数一定不存在反函数是一个错误结论.从映射的概念可以知道,函数实际上就是集合A到集合 B 的映射,其中 A、B 都是非空的数的集合.对于自变量 x 在定义域 A 内的任何一个值。在集合 B 中都有唯一的函数值 y 和它对应;自变量的值相当于原象。
文摘1. Find the number of subsets of {1,2,3,4,5,6,7,8} that are subsets of neither {1,2,3,4,5} nor {4,5,6,7,8}.译:求集合{1,2,3,4,5,6,7,8}满足下列条件的子集个数.这个子集既不是{1,2,3,4,5}的子集,也不是{4,5,6,7,8}的子集.