期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于扩散模型的流场超分辨率重建方法
1
作者 韩阳 朱军鹏 +2 位作者 郭春雨 范毅伟 汪永号 《力学学报》 EI CAS CSCD 北大核心 2023年第10期2309-2320,共12页
低分辨率的流场数据具有较少的信息量,不能充分捕捉流场中的细节演化过程.尤其对于湍流的随机脉动特征和小尺度涡旋细节特征更加难以获取,这限制了对流场演化机理进行深入研究.为了解决这一局限性,并从低分辨率流场中重建高分辨率数据,... 低分辨率的流场数据具有较少的信息量,不能充分捕捉流场中的细节演化过程.尤其对于湍流的随机脉动特征和小尺度涡旋细节特征更加难以获取,这限制了对流场演化机理进行深入研究.为了解决这一局限性,并从低分辨率流场中重建高分辨率数据,文章提出一种流场超分辨率重建的生成扩散模型FlowDiffusionNet.该模型以低分辨率流场数据输入作为约束条件,采用去噪分数匹配方法,来实现高分辨率流场数据的复现.FlowDiffusionNet在结构设计上充分考虑了流场数据的低频信息与高频空间特征,采用基于扩散过程的建模方法,用于重建高分辨率流场数据的残差.该模型结构便于实现迁移学习,可在不同程度的退化流场上应用.将该方法在多种经典流场数据集上进行测试,并与双三次插值(bicubic)、超分辨率生成对抗网络(SRGAN)、超分辨率卷积神经网络(SRCNN)等方法进行比较.结果表明,该方法在各种流场上的重建性能达到最佳水平,特别是对于包含小尺度涡结构的4倍下采样流场数据,客观评价指标SSIM达到0.999. 展开更多
关键词 流场超分辨率重建 条件扩散模型 深度学习 流场残差 迁移学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部