In order to facilitate the extraction of the default mode network(DMN), reduce the data complexity of the functional magnetic resonance imaging (fMRI)and overcome the restriction of the linearity of the mixing pro...In order to facilitate the extraction of the default mode network(DMN), reduce the data complexity of the functional magnetic resonance imaging (fMRI)and overcome the restriction of the linearity of the mixing process encountered with the independent component analysis(ICA), a framework of dimensionality reduction and nonlinear transformation is proposed. First, the principal component analysis(PCA)is applied to reduce the time dimension 153 594×128 of the fMRI data to 153 594×5 for simplifying complexity computation and obtaining 95% of the information. Secondly, a new kernel-based nonlinear ICA method referred as the kernel ICA(KICA)based on the Gaussian kernel is introduced to analyze the resting-state fMRI data and extract the DMN. Experimental results show that the KICA provides a better performance for the resting-state fMRI data analysis compared with the classical ICA. Furthermore, the DMN is accurately extracted and the noise is reduced.展开更多
基金Key Academic Discipline during the11th Five-Year Plan Period of Jiangsu Province
文摘In order to facilitate the extraction of the default mode network(DMN), reduce the data complexity of the functional magnetic resonance imaging (fMRI)and overcome the restriction of the linearity of the mixing process encountered with the independent component analysis(ICA), a framework of dimensionality reduction and nonlinear transformation is proposed. First, the principal component analysis(PCA)is applied to reduce the time dimension 153 594×128 of the fMRI data to 153 594×5 for simplifying complexity computation and obtaining 95% of the information. Secondly, a new kernel-based nonlinear ICA method referred as the kernel ICA(KICA)based on the Gaussian kernel is introduced to analyze the resting-state fMRI data and extract the DMN. Experimental results show that the KICA provides a better performance for the resting-state fMRI data analysis compared with the classical ICA. Furthermore, the DMN is accurately extracted and the noise is reduced.