The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effe...The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effect.It is found that the vibronic effect converts the dipole-forbidden excitation of the ^(1)A_(2) into a dipole-allowed one,which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region.The present investigation shows that the vibronic effect of H_(2)O is slightly stronger than that of D_(2)O,which exhibits a clear isotopic effect.展开更多
Oscillator strengths and cross sections of the valence-shell excitations in NO_(2)are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth’s atmospher...Oscillator strengths and cross sections of the valence-shell excitations in NO_(2)are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth’s atmosphere. In the present work, the generalized oscillator strengths of the valence-shell excitations in NO_(2)were obtained based on the fast electron scattering technique at an incident electron energy of 1.5 ke V and an energy resolution of about 70 me V. By extrapolating the generalized oscillator strengths to the limit of a zero squared momentum transfer, the optical oscillator strengths for the dipole-allowed transitions have been obtained, which provide an independent cross check to the previous experimental results. Based on the BE-scaling method, the corresponding integral cross sections have also been derived systematically from the excitation threshold to 5000 eV. The present dynamic parameters can provide the fundamental spectroscopic data of NO_(2)and have important applications in the studies of atmospheric science. The datasets presented in this paper, including the GOSs, OOSs and ICSs, are openly available at https://doi.org/10.57760/sciencedb.j00113.00156.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12334010,12174259,and 11604003)。
文摘The generalized oscillator strengths of the dipole-forbidden excitations of the ^(1)A_(2) of H_(2)O and D_(2)O were calculated with the time dependent density functional theory,by taking into account the vibronic effect.It is found that the vibronic effect converts the dipole-forbidden excitation of the ^(1)A_(2) into a dipole-allowed one,which enhances the intensities of the corresponding generalized oscillator strength in the small squared momentum transfer region.The present investigation shows that the vibronic effect of H_(2)O is slightly stronger than that of D_(2)O,which exhibits a clear isotopic effect.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1602500)the National Natural Science Foundation of China (Grant Nos. 12334010 and U1932207)。
文摘Oscillator strengths and cross sections of the valence-shell excitations in NO_(2)are of great significance in testing the theoretical calculations and monitoring the state of the ozone layer in the earth’s atmosphere. In the present work, the generalized oscillator strengths of the valence-shell excitations in NO_(2)were obtained based on the fast electron scattering technique at an incident electron energy of 1.5 ke V and an energy resolution of about 70 me V. By extrapolating the generalized oscillator strengths to the limit of a zero squared momentum transfer, the optical oscillator strengths for the dipole-allowed transitions have been obtained, which provide an independent cross check to the previous experimental results. Based on the BE-scaling method, the corresponding integral cross sections have also been derived systematically from the excitation threshold to 5000 eV. The present dynamic parameters can provide the fundamental spectroscopic data of NO_(2)and have important applications in the studies of atmospheric science. The datasets presented in this paper, including the GOSs, OOSs and ICSs, are openly available at https://doi.org/10.57760/sciencedb.j00113.00156.